[发明专利]一种地铁列车冲突预警方法有效

专利信息
申请号: 201510150113.4 申请日: 2015-03-31
公开(公告)号: CN105083322B 公开(公告)日: 2017-03-08
发明(设计)人: 韩云祥;黄晓琼 申请(专利权)人: 江苏理工学院
主分类号: B61L23/00 分类号: B61L23/00;B61L27/00
代理公司: 常州市江海阳光知识产权代理有限公司32214 代理人: 陈晓君
地址: 213001 江苏*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种地铁列车冲突预警方法,包括如下步骤先根据各个列车的计划运行参数,生成轨道交通网络的拓扑结构图;再基于拓扑结构图,分析列车流的可控性和敏感性;再根据各个列车的计划运行参数,生成多列车无冲突运行轨迹;再在每一采样时刻,基于列车当前的运行状态和历史位置观测序列,对列车未来某时刻的行进位置进行预测,然后建立从列车的连续动态到离散冲突逻辑的观测器,将连续动态映射为离散观测值表达的冲突状态;当系统有可能违反交通管制规则时,对地铁交通混杂系统的混杂动态行为实施监控,为控制中心提供告警信息。本发明滚动实时对地铁列车轨迹进行预测,有效预警列车冲突,提高地铁交通的安全性。
搜索关键词: 一种 地铁 列车 冲突 预警 方法
【主权项】:
一种地铁列车冲突预警方法,其特征在于包括如下步骤:步骤A、根据各个列车的计划运行参数,生成轨道交通网络的拓扑结构图;步骤B、基于步骤A所构建的轨道交通网络的拓扑结构图,分析列车流的可控性和敏感性二类特性;步骤C、根据各个列车的计划运行参数,在构建列车动力学模型的基础上,依据列车运行冲突耦合点建立列车运行冲突预调配模型,生成多列车无冲突运行轨迹;步骤D、在每一采样时刻t,基于列车当前的运行状态和历史位置观测序列,对列车未来某时刻的行进位置进行预测;其具体过程如下:步骤D1、列车轨迹数据预处理,以列车在起始站的停靠位置为坐标原点,在每一采样时刻,依据所获取的列车原始离散二维位置序列x=[x1,x2,…,xn]和y=[y1,y2,…,yn],采用一阶差分方法对其进行处理获取新的列车离散位置序列Δx=[Δx1,Δx2,...,Δxn‑1]和Δy=[Δy1,Δy2,...,Δyn‑1],其中Δxi=xi+1‑xi,Δyi=yi+1‑yi(i=1,2,...,n‑1);步骤D2、对列车轨迹数据聚类,对处理后新的列车离散二维位置序列Δx和Δy,通过设定聚类个数M',采用K‑means聚类算法分别对其进行聚类;步骤D3、对聚类后的列车轨迹数据利用隐马尔科夫模型进行参数训练,通过将处理后的列车运行轨迹数据Δx和Δy视为隐马尔科夫过程的显观测值,通过设定隐状态数目N'和参数更新时段τ',依据最近的T'个位置观测值并采用B‑W算法滚动获取最新隐马尔科夫模型参数λ';具体来讲:由于所获得的列车轨迹序列数据长度是动态变化的,为了实时跟踪列车轨迹的状态变化,有必要在初始轨迹隐马尔科夫模型参数λ'=(π,A,B)的基础上对其重新调整,以便更精确地推测列车在未来某时刻的位置;每隔时段τ',依据最新获得的T'个观测值(o1,o2,…,oT')对轨迹隐马尔科夫模型参数λ'=(π,A,B)进行重新估计;步骤D4、依据隐马尔科夫模型参数,采用Viterbi算法获取当前时刻观测值所对应的隐状态q;步骤D5、每隔时段根据最新获得的隐马尔科夫模型参数λ'=(π,A,B)和最近H个历史观测值(o1,o2,…,oH),基于列车当前时刻的隐状态q,在时刻t,通过设定预测时域h',获取未来时段列车的位置预测值O;步骤E、建立从列车的连续动态到离散冲突逻辑的观测器,将地铁交通系统的连续动态映射为离散观测值表达的冲突状态;当系统有可能违反交通管制规则时,对地铁交通混杂系统的混杂动态行为实施监控,为地铁交通控制中心提供及时的告警信息。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江苏理工学院,未经江苏理工学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201510150113.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top