[发明专利]基于多特征融合的视频烟雾检测方法有效
申请号: | 201510170159.2 | 申请日: | 2015-04-10 |
公开(公告)号: | CN104794486B | 公开(公告)日: | 2018-10-16 |
发明(设计)人: | 周雪;邹见效;徐红兵;邓林 | 申请(专利权)人: | 电子科技大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06K9/00 |
代理公司: | 成都行之专利代理事务所(普通合伙) 51220 | 代理人: | 温利平 |
地址: | 611731 四川省成*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于多特征融合的视频烟雾检测方法,首先对训练视频序列提取运动目标,根据颜色特征判断是否为疑似烟雾区域,对疑似烟雾区域提取形状不规则特征、面积增长特征和K个背景模糊特征,组合成特征向量,然后对特征向量进行正负样本划分,得到训练样本;将训练样本的特征向量作为输出、样本类型作为输出,对分类器进行训练;对于待检测图像,采用相同方法提取得到特征向量,输入分类器进行判定是否为烟雾。本发明对疑似烟雾区域提取多个特征,对烟雾进行综合判定,提高烟雾的检测率。 | ||
搜索关键词: | 基于 特征 融合 视频 烟雾 检测 方法 | ||
【主权项】:
1.一种基于多特征融合的视频烟雾检测方法,其特征在于,包括以下步骤:S1:选取若干个含有火灾烟雾与其他运动目标的视频序列,提取得到各个运动目标的特征向量作为训练样本,训练样本的获取方法包括以下步骤:S1.1:对每个训练视频序列进行运动目标检测;S1.2:对步骤S1.1得到的运动目标区域,遍历区域内的每个像素,根据预设的颜色特征判别方法判断该像素是否为烟雾像素,将不是烟雾像素的像素点去除,得到疑似烟雾区域;S1.3:对疑似烟雾区域进行动态特征提取,包括形状不规则特征、面积增长特征和在主运动方向上的背景模糊特征,每种特征的提取方法为:(1)形状不规则特征S的计算公式如下:S=P/Q其中,P表示疑似烟雾区域边缘轮廓长度,Q表示疑似烟雾区域的面积;(2)面积增长特征ΔA的计算公式如下:
其中,At表示当前第t帧视频图像中疑似烟雾区域的面积,At‑k表示在第t‑k帧视频图像中对应的疑似烟雾区域的面积,k的取值范围为k≥1;(3)在主运动方向上的背景模糊特征:对疑似烟雾区域的运动目标进行主运动方向分析,得到疑似烟雾区域的主运动方向,并得到疑似烟雾区域在主运动方向上的外接矩形;然后对当前第t帧图像F(t)和对应的背景图像B(t)分别进行高通滤波,得到高通滤波后的当前帧图像和背景图像,计算外接矩形区域内每个像素点的相对衰减系数C(m,n,t),计算公式为:
其中,Bh(m,n,t)表示滤波后背景图像Bh(t)中像素点(m,n)的灰度值,Fh(m,n,t)表示滤波后当前帧图像Fh(t)中像素点(m,n)的灰度值;将外接矩形沿主运动方向平均分为K段,K的取值范围为K≥2,分别计算各段区域内的平均衰减系数,将K个平均衰减系数作为K个背景模糊特征;S1.4:将步骤S1.3中得到的形状不规则特征、面积增长特征和K个背景模糊特征,组合成为特征向量;S1.5:判断疑似烟雾区域是否确实为火灾烟雾区域,如果是,则将该疑似烟雾区域的特征向量作为正样本,否则该疑似烟雾区域的特征向量作为负样本;S2:将步骤S1得到的各个训练样本的特征向量输入至预设的分类器,以对应的样本类型作为输出,对分类器进行训练;S3:对待检测视频,首先进行运动目标检测,然后根据颜色特征判断运动目标是否为疑似烟雾区域,如果不是,不作任何处理,如果是,对疑似烟雾区域提取得到形状不规则特征、面积增长特征和K个背景模糊特征,组合成特征向量,最后将特征向量输入至步骤S2训练得到的分类器,得到是否为烟雾的判定结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201510170159.2/,转载请声明来源钻瓜专利网。