[发明专利]一种迭代步长可变的多步Q学习自适应方法有效
申请号: | 201510212647.5 | 申请日: | 2015-04-29 |
公开(公告)号: | CN104794359B | 公开(公告)日: | 2017-12-15 |
发明(设计)人: | 贺知明;万海川;高振;杨庆;肖雪冬 | 申请(专利权)人: | 电子科技大学 |
主分类号: | G06F19/00 | 分类号: | G06F19/00 |
代理公司: | 电子科技大学专利中心51203 | 代理人: | 李明光 |
地址: | 611731 四川省成*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明属于雷达信号处理领域,提出一种迭代步长可变的多步Q学习自适应方法,用以解决现有Q学习算法环境适应性差,与急剧变化环境无法工作的问题。本发明提出将步长(最大迭代次数)的大小设置为环境的函数,根据环境的变化程度来决定步长的大小;因此,本发明能够迅速地适应环境,当环境急剧变化的时候,采用更多步的信息来更新当前Q值,有效提高算法预见能力;同时,当环境变化很细微时,采用较少步的信息来更新Q值,有效减少算法复杂度;有效提高算法环境适应能力。 | ||
搜索关键词: | 一种 步长 可变 学习 自适应 算法 | ||
【主权项】:
一种迭代步长可变的多步Q学习自适应方法,包括以下步骤:步骤1:初始化所有的(s,u),其中s∈S,u∈A(u),S表示状态集合,s表示集合中一个状态;u为系统选择波形,A(u)为波形集合;令Q(s,u)=0,k=0,k表示迭代次数,设定最大迭代次数Kmax(t),以及更新公式:Kmax(t+1)=μKmax(t),0<μ<2,初始值为1;步骤2:雷达环境学习,令当前状态为st,雷达发射波形集合中不同的波形,并记录不同波形所产生的Q值,通过比较确定Q值最大的对应波形u,即:Y(ut)=argmaxQk(st,ut);步骤3:利用更新公式更新Q值:Qk+1(st,ut)=(1‑αk+1)Qk(st,ut)+αk+1[Rt(st+1|st,ut)+λmaxQk(st+1,ut+1)]其中,st代表t时刻状态,ut代表t时刻发射波形,Rt(st+1|st,ut)为t时刻、环境状态为st、发射波形为ut的情况下状态变换到st+1产生的报酬函数,λ为设定折扣因子;步骤4:确定下一状态,根据状态转移矩阵A,测量概率矩阵B,确定下一状态st+1:I为对角矩阵;步骤5:计算状态变化范数σ=||st+1‑st||,设定μ值变动的最低门限值l和μ值变动的最高门限值h;当σ<l时,μ值减0.1,并降低l、使l=0.6l;当σ>h时,μ值加0.1,并提高h、使h=1.2h;否则,μ值不变;步骤6:k值加1,当k<Kmax(t),根据公式Kmax(t+1)=μKmax(t),更新最大迭代次数;令st=st+1,跳至步骤2;否则,停止迭代,跳至步骤7;步骤7:对于每一个状态s∈S,选择d(st)∈argmaxQ(st,ut)得到最优策略。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201510212647.5/,转载请声明来源钻瓜专利网。
- 上一篇:一种基于数学模型预测锚杆极限承载力的计算方法
- 下一篇:晶振外壳除尘装置
- 同类专利
- 专利分类
G06 计算;推算;计数
G06F 电数字数据处理
G06F19-00 专门适用于特定应用的数字计算或数据处理的设备或方法
G06F19-10 .生物信息学,即计算分子生物学中的遗传或蛋白质相关的数据处理方法或系统
G06F19-12 ..用于系统生物学的建模或仿真,例如:概率模型或动态模型,遗传基因管理网络,蛋白质交互作用网络或新陈代谢作用网络
G06F19-14 ..用于发展或进化的,例如:进化的保存区域决定或进化树结构
G06F19-16 ..用于分子结构的,例如:结构排序,结构或功能关系,蛋白质折叠,结构域拓扑,用结构数据的药靶,涉及二维或三维结构的
G06F19-18 ..用于功能性基因组学或蛋白质组学的,例如:基因型–表型关联,不均衡连接,种群遗传学,结合位置鉴定,变异发生,基因型或染色体组的注释,蛋白质相互作用或蛋白质核酸的相互作用
G06F 电数字数据处理
G06F19-00 专门适用于特定应用的数字计算或数据处理的设备或方法
G06F19-10 .生物信息学,即计算分子生物学中的遗传或蛋白质相关的数据处理方法或系统
G06F19-12 ..用于系统生物学的建模或仿真,例如:概率模型或动态模型,遗传基因管理网络,蛋白质交互作用网络或新陈代谢作用网络
G06F19-14 ..用于发展或进化的,例如:进化的保存区域决定或进化树结构
G06F19-16 ..用于分子结构的,例如:结构排序,结构或功能关系,蛋白质折叠,结构域拓扑,用结构数据的药靶,涉及二维或三维结构的
G06F19-18 ..用于功能性基因组学或蛋白质组学的,例如:基因型–表型关联,不均衡连接,种群遗传学,结合位置鉴定,变异发生,基因型或染色体组的注释,蛋白质相互作用或蛋白质核酸的相互作用