[发明专利]一种基于笔迹鉴定的网上安全支付系统有效

专利信息
申请号: 201510242186.6 申请日: 2015-05-13
公开(公告)号: CN104820924B 公开(公告)日: 2018-04-27
发明(设计)人: 王进;颉小凤;谢水宁;吴亦超;付豪;张俊伟;陈乔松;邓欣 申请(专利权)人: 重庆邮电大学
主分类号: G06Q20/38 分类号: G06Q20/38;G06K9/00
代理公司: 重庆华科专利事务所50123 代理人: 康海燕
地址: 400065 *** 国省代码: 重庆;85
权利要求书: 查看更多 说明书: 查看更多
摘要: 一种基于笔迹鉴定的网上安全支付系统,包括101用户注册模块;102接收模块用于接收用户输入的任一待笔迹签名样本,进行多特征融合,将多种属性特征值作为样本的特征值,挖掘各个属性值对正确识别本人签名贡献程度,降序排序,按照贡献值排序找一组最优权值融合多种特征;103学习、训练模块将综合后的多特征集转化为1到8的数据后作为基于邻域超网络分类器的输入,进行训练和测试;104鉴定模块用户输入签名,将待识别超边与所述超边库中的超边进行对比来鉴定用户笔迹的真伪;S105支付模块将笔迹鉴定应用到网上安全支付。本发明具有更高的稳定性、安全性、便捷性;同时结合了多特征融合技术,能够提高签名样本的识别效率,以及准确性。
搜索关键词: 一种 基于 笔迹 鉴定 网上 安全 支付 系统
【主权项】:
一种基于笔迹鉴定的网上安全支付系统,其特征在于,包括:101用户注册模块:用于对用户网上支付进行安全身份认证;102接收模块:用于接收用户输入的任一待笔迹签名样本;所述接收模块是预先提取待识别签名样本特征集,接收用户输入的任一待识别签名样本,并提取所述待识别签名样本的时间序列特征、位置属性特征和笔顺特征,挖掘各个属性特征值对正确识别本人签名贡献程度,降序排序,按照贡献值排序找一组最优权值融合多种特征,将融合后的多特征作为识别签名样本特征集;103学习、训练模块:根据预设融合后的识别签名样本特征集的空间近邻关系建立模型,根据样本点的近邻信息对样本进行分类,首先,通过样本的邻域来粒化训练集论域,将每个样本的邻域看成基本信息粒子;其次,将属于同一邻域的样本点映射到超网络超边的顶点,通过演化学习,超边获取局部空间样本分布到邻域类别的映射关系,从而构建邻域超网络模型;最后,将融合后的多种属性特征值转化为1到8的数据后作为邻域超网络模型的输入,用户本人前书写的签名样本作为训练样本集,将训练样本进行超边随机初始化、采用超边替代超网络分类器,将所述超边进行学习分类后,得到训练集超边库;104鉴定模块:进行网上支付环节时,用户输入签名,匹配特征库的必要特征,当满足必要特征之后再进行识别,在训练集超边库中搜索,如果达成搜索结果则成功识别,否则不识别为任何人的签名;S105支付模块:将笔迹鉴定应用到网上安全支付。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201510242186.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top