[发明专利]基于深度卷积神经网络的害虫图像自动识别方法有效

专利信息
申请号: 201510247514.1 申请日: 2015-05-15
公开(公告)号: CN104850836B 公开(公告)日: 2018-04-10
发明(设计)人: 刘子毅;何勇;杨国国 申请(专利权)人: 浙江大学
主分类号: G06K9/00 分类号: G06K9/00;G06K9/62
代理公司: 杭州天勤知识产权代理有限公司33224 代理人: 胡红娟
地址: 310027 浙*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于深度卷积神经网络的害虫图像自动识别方法,包括以下步骤(1)收集原始图像并进行预处理,构成训练集,计算训练集的均值图像;(2)构造深度卷积神经网络;(3)在训练集的训练样本中随机采集子图像块,利用子图像块预训练深度卷积神经网络;(4)利用训练集,结合基于mini‑batch的随机梯度下降算法训练深度卷积神经网络;(5)对待测害虫图像进行所述预处理,形成测试样本,测试样本减去训练集的均值图像后,利用训练完成的深度卷积神经网络识别测试样本。本发明识别精度高、识别种类多,对害虫类内变化鲁棒性强、对害虫类间相似性敏感。
搜索关键词: 基于 深度 卷积 神经网络 害虫 图像 自动识别 方法
【主权项】:
一种基于深度卷积神经网络的害虫图像自动识别方法,其特征在于,包括以下步骤:(1)收集原始图像并进行预处理,构成训练集,计算训练集的均值图像;(2)构造深度卷积神经网络;所述深度卷积神经网络包括:一个输入层、五个卷积层、三个池化层、两个全连接层和一个输出层;五个卷积层之前为输入层,三个最大池化层分别位于第一、第二、第五个卷积层之后,两个全连接层位于第三个最大池化层与最后的输出层之间;(3)在训练集的训练样本中随机采集子图像块,利用子图像块预训练深度卷积神经网络;(4)利用训练集,结合基于mini‑batch的随机梯度下降算法训练深度卷积神经网络;(5)对待测害虫图像进行所述预处理,形成测试样本,测试样本减去训练集的均值图像后,利用训练完成的深度卷积神经网络识别测试样本。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201510247514.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top