[发明专利]基于多成分鲁棒PCA的运动目标检测方法有效
申请号: | 201510275727.5 | 申请日: | 2015-05-26 |
公开(公告)号: | CN104867162B | 公开(公告)日: | 2017-10-27 |
发明(设计)人: | 孙玉宝;刘青山;周伟;朱松;孙茂庭 | 申请(专利权)人: | 南京信息工程大学 |
主分类号: | G06T7/215 | 分类号: | G06T7/215 |
代理公司: | 南京纵横知识产权代理有限公司32224 | 代理人: | 董建林 |
地址: | 210044 *** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于多成分鲁棒PCA的运动目标检测方法,包括S101、对待检测视频序列进行行列向量化,获得视频数据矩阵;S102、根据所述视频数据矩阵,构建多成分鲁棒PCA模型;S103、采用增广拉格朗日乘子法对所述多成分鲁棒PCA模型进行交替迭代优化和乘子更新;S104、更新迭代次数,计算并判断当前次迭代是否收敛;S105、若当前次迭代收敛,则根据当前次迭代结果计算得到背景矩阵、所检测得到的运动目标矩阵和背景中的动态变化矩阵,从而实现运动目标检测,否则返回执行步骤S103。本发明可以从背景扰动中分离出有意义的显著运动目标,提升检测算法的鲁棒性。 | ||
搜索关键词: | 基于 成分 pca 运动 目标 检测 方法 | ||
【主权项】:
一种基于多成分鲁棒PCA的运动目标检测方法,其特征在于,包括:S101、对待检测视频序列进行行列向量化,获得视频数据矩阵;S102、根据所述视频数据矩阵,构建多成分鲁棒PCA模型;S103、采用增广拉格朗日乘子法对所述多成分鲁棒PCA模型进行交替迭代优化和乘子更新;S104、更新迭代次数,计算并判断当前次迭代是否收敛;S105、若当前次迭代收敛,则根据当前次迭代结果计算得到背景矩阵、所检测得到的运动目标矩阵和背景中的动态变化矩阵,从而实现运动目标检测,否则返回执行步骤S103;所述S101具体包括:对视频序列进行行列向量化,获得视频数据矩阵,其中,X∈Rm×n,X表示视频数据矩阵,R表示视频帧,m为视频帧的像素数,n为视频帧数;所述S102具体包括:根据所述视频数据矩阵,构建多成分鲁棒PCA模型,其中,所述多成分鲁棒PCA模型为:式中,A∈Rm×n为低秩成分,为矩阵A的核范数,表示背景矩阵,E1、E2∈Rm×n为稀疏成分,λ1、λ2为正则化参数,||E1||1为稀疏成分E1的1范数,表示运动目标矩阵,为稀疏成分E2的F范数,表示背景中的动态变化矩阵,表示E1、E2的相干性约束,γ表示相干性权重参数。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京信息工程大学,未经南京信息工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201510275727.5/,转载请声明来源钻瓜专利网。