[发明专利]基于Wishart深度网络的极化SAR图像分类方法有效
申请号: | 201510341168.3 | 申请日: | 2015-06-18 |
公开(公告)号: | CN105046268B | 公开(公告)日: | 2018-05-04 |
发明(设计)人: | 王爽;焦李成;郭岩河;高琛琼;刘红英;史丹荣;张东辉;滑文强 | 申请(专利权)人: | 西安电子科技大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 陕西电子工业专利中心61205 | 代理人: | 王品华,朱红星 |
地址: | 710071*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于Wishart深度网络的极化SAR图像分类方法,主要解决现在特征提取需要很多先验知识以及人工劳动强度大的问题。其实现步骤为(1)输入极化SAR图像并做滤波处理;(2)对滤波后的图像构造多层Wishart RBM学习特征;(3)用学习到的特征训练softmax分类器;(4)用多层Wishart RBM和softmax分类器构造深度网络DBN,并对其进行训练;(6)用深度网络DBN对极化SAR图像分类并输出结果。本发明与经典分类方法相比,分类正确率更高,分类结果同质区域更完整,区域一致性更好,分类性能更好,适用于对极化SAR图像进行地物分类和目标识别。 | ||
搜索关键词: | 基于 wishart 深度 网络 极化 sar 图像 分类 方法 | ||
【主权项】:
一种基于Wishart深度网络的极化SAR图像分类方法,包括如下步骤:(1)读入一幅待分类的极化SAR图像,采用精致极化LEE滤波方法对待分类的极化SAR图像进行滤波,去除斑点噪声,得到滤波后的极化SAR图像;(2)从滤波后的极化SAR图像随机选取10%的有标记数据作为训练样本,剩下的90%有标记数据作为测试样本;(3)Wishart RBM是深度网络DBN的基本构成单元,可用于特征学习,构造三层Wishart RBM结构,完成对极化SAR样本的特征学习:(3a)将训练样本输入到第一层Wishart RBM中进行训练,得到能表征输入数据的特征,并保存第一层Wishart RBM的权值和偏置;(3b)将第一层Wishart RBM训练得到的特征输入到第二层Wishart RBM中进行训练,得到能表征第一层Wishart RBM所得的特征的新特征,并保存第二层Wishart RBM的权值和偏置;(3c)将第二层Wishart RBM训练得到的特征输入到第三层Wishart RBM中进行训练,得到能表征第二层Wishart RBM所得的特征的新特征,并保存第三层Wishart RBM的权值和偏置,该第三层Wishart RBM学习到的特征就是三层Wishart RBM结构学习得到的特征;(4)训练深度网络DBN:将三层Wishart RBM学习得到的特征作为深度网络DBN的最后一层贝叶斯网络softmax分类器层的输入,对softmax分类器层进行训练,得到训练好的softmax分类器,并保存softmax分类器的权值;用三层Wishart RBM的权值和偏置及softmax分类器的权值构成深度网络DBN网络,并用基于最小交叉熵的共轭梯度法对该深度网络DBN进行200次训练,得到训练好的深度网络框架;(5)将测试数据输入到训练好的深度网络框架中得到分类结果;(6)在完成分类后的极化SAR图像上,按照红、绿、蓝三基色在相同类别上相同的颜色,得到上色后的分类结果图并输出。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201510341168.3/,转载请声明来源钻瓜专利网。
- 上一篇:微型插头电连接器、微型插座电连接器及电连接器组合
- 下一篇:插头电连接器