[发明专利]一种基于KNN算法的稿件翻译优化方法在审
申请号: | 201510406887.9 | 申请日: | 2015-07-13 |
公开(公告)号: | CN105005792A | 公开(公告)日: | 2015-10-28 |
发明(设计)人: | 郑林涛;史恒亮;俞卫华;董永生;范庆辉 | 申请(专利权)人: | 河南科技大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 洛阳公信知识产权事务所(普通合伙) 41120 | 代理人: | 罗民健 |
地址: | 471000 河*** | 国省代码: | 河南;41 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种基于KNN算法的稿件翻译优化方法,首先将比较大的稿件进行拆分,提取待译稿件中的关键词将其进行分类,通过算法匹配K值,得到最优分配结果。本发明主要在于对训练用稿件和待分类邮件数据进行预处理;将预处理后的训练用稿件和待分类邮件数据分别进行文本表示;对文本表示的训练用稿件和待分类邮件数据分别利用遗传算法进行特征提取;对提取的训练用稿件特征进行分类训练,使用经过优化样本集的KNN算法进行训练分类,构造文本分类器;将文本分类器作用于特征提取后的待分类稿件,得到待分类稿件的分类结果。本发明能够更好的应用于稿件文本信息挖掘系统。 | ||
搜索关键词: | 一种 基于 knn 算法 稿件 翻译 优化 方法 | ||
【主权项】:
一种基于KNN算法的稿件翻译优化方法,其特征在于,如下步骤:对训练用稿件和待分类邮件数据进行文本预处理;将预处理后的训练用稿件和待分类邮件数据分别进行文本表示;对文本表示的训练用稿件和待分类邮件数据分别利用遗传算法进行特征提取;对提取的训练用稿件特征进行分类训练,使用经过优化样本集的KNN算法进行训练分类,构造文本分类器;将文本分类器作用于特征提取后的待分类稿件,得到待分类稿件的分类结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于河南科技大学,未经河南科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201510406887.9/,转载请声明来源钻瓜专利网。
- 上一篇:一种具有表示巨量信息的几何编码
- 下一篇:仿真人类低层视觉的目标感知方法