[发明专利]精简应变监测载荷问题索广义位移识别方法在审
申请号: | 201510439148.X | 申请日: | 2015-07-23 |
公开(公告)号: | CN104990587A | 公开(公告)日: | 2015-10-21 |
发明(设计)人: | 韩玉林;韩佳邑 | 申请(专利权)人: | 东南大学 |
主分类号: | G01D21/02 | 分类号: | G01D21/02;G01M13/00 |
代理公司: | 南京瑞弘专利商标事务所(普通合伙) 32249 | 代理人: | 杨晓玲 |
地址: | 211189 江*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 精简应变监测载荷问题索广义位移识别方法基于应变监测,通过建立索结构的力学计算基准模型,在此模型的基础上计算获得单位损伤被监测量数值变化矩阵。依据被监测量当前数值向量同被监测量初始数值向量、单位损伤被监测量数值变化矩阵和待求的被评估对象当前名义损伤向量间存在的近似线性关系算出被评估对象当前名义损伤向量的非劣解,据此可以识别出核心被评估对象的健康状态。 | ||
搜索关键词: | 精简 应变 监测 载荷 问题 广义 位移 识别 方法 | ||
【主权项】:
精简应变监测载荷问题索广义位移识别方法,其特征在于所述方法包括:a.当索结构承受的载荷虽有变化,但索结构正在承受的载荷没有超出索结构初始许用载荷时,本方法适用;索结构初始许用载荷指索结构在竣工时的许用载荷,能够通过常规力学计算获得;本方法统一称被评估的支座广义位移分量、支承索和载荷为被评估对象,设被评估的支座广义位移分量的数量、支承索的数量和载荷的数量之和为N,即被评估对象的数量为N;确定被评估对象的编号规则,按此规则将索结构中所有的被评估对象编号,该编号在后续步骤中将用于生成向量和矩阵;本方法用变量k表示这一编号,k=1,2,3,…,N;本方法用名称“核心被评估对象”专指“被评估对象”中的被评估的支承索和支座广义位移分量,设被评估的支承索和支座广义位移分量的数量之和为P,即核心被评估对象的数量为P,本方法用名称“次要被评估对象”专指“被评估对象”中的被评估的载荷;设索系统中共有M1根支承索;确定指定的被监测点,被监测点即表征索结构应变信息的所有指定点,并给所有指定点编号;确定被监测点的被监测的应变方向,并给所有指定的被监测应变编号,“被监测应变编号”在后续步骤中将用于生成向量和矩阵,“索结构的全部被监测的应变数据”由上述所有被监测应变组成;本方法将“索结构的被监测的应变数据”简称为“被监测量”;所有被监测量的数量之和记为M,M应当大于核心被评估对象的数量,M小于被评估对象的数量;物体、结构承受的外力可称为载荷,载荷包括面载荷和体积载荷;面载荷又称表面载荷,是作用于物体表面的载荷,包括集中载荷和分布载荷两种;体积载荷是连续分布于物体内部各点的载荷,包括物体的自重和惯性力在内;集中载荷分为集中力和集中力偶两种,在包括笛卡尔直角坐标系在内的坐标系中,一个集中力可以分解成三个分量,同样的,一个集中力偶也可以分解成三个分量,如果载荷实际上是集中载荷,在本方法中将一个集中力分量或一个集中力偶分量计为或统计为一个载荷,此时载荷的变化具体化为一个集中力分量或一个集中力偶分量的变化;分布载荷分为线分布载荷和面分布载荷,分布载荷的描述至少包括分布载荷的作用区域和分布载荷的大小,分布载荷的大小用分布集度来表达,分布集度用分布特征和幅值来表达;如果载荷实际上是分布载荷,本方法谈论载荷的变化时,实际上是指分布载荷分布集度的幅值的改变,而所有分布载荷的作用区域和分布集度的分布特征是不变的;在包括笛卡尔直角坐标系在内的坐标系中,一个分布载荷可以分解成三个分量,如果这分布载荷的三个分量的各自的分布集度的幅值发生变化,且变化的比率不全部相同,那么在本方法中把这分布载荷的三个分量计为或统计为三个分布载荷,此时一个载荷就代表分布载荷的一个分量;体积载荷是连续分布于物体内部各点的载荷,体积载荷的描述至少包括体积载荷的作用区域和体积载荷的大小,体积载荷的大小用分布集度来表达,分布集度用分布特征和幅值来表达;如果载荷实际上是体积载荷,在本方法中实际处理的是体积载荷分布集度的幅值的改变,而所有体积载荷的作用区域和分布集度的分布特征是不变的,此时在本方法中提到载荷的改变时实际上是指体积载荷的分布集度的幅值的改变,此时,发生变化的载荷是指那些分布集度的幅值发生变化的体积载荷;在包括笛卡尔直角坐标系在内的坐标系中,一个体积载荷可以分解成三个分量,如果这体积载荷的三个分量的各自的分布集度的幅值发生变化,且变化的比率不全部相同,那么在本方法中把这体积载荷的三个分量计为或统计为三个分布载荷;b.测量计算得到初始索结构的实测数据,初始索结构的实测数据是包括索结构集中载荷测量数据、索结构分布载荷测量数据、索结构体积载荷测量数据、初始索结构支座广义坐标数据、索结构支座初始广义位移测量数据、所有被监测量的初始数值、所有支承索的初始索力数据、初始索结构模态数据、初始索结构应变数据、初始索结构几何数据、初始索结构支座广义坐标数据、初始索结构角度数据和初始索结构空间坐标数据在内的实测数据,在得到初始索结构的实测数据的同时,测量计算得到包括支承索的无损检测数据在内的能够表达支承索的健康状态的数据,此时的能够表达支承索的健康状态的数据称为支承索初始健康状态数据;所有被监测量的初始数值组成被监测量初始数值向量Co,被监测量初始数值向量Co的编号规则与M个被监测量的编号规则相同;利用索结构支座初始广义位移测量数据、支承索初始健康状态数据以及索结构载荷测量数据建立被评估对象初始损伤向量do,向量do表示用初始力学计算基准模型Ao表示的索结构的被评估对象的初始健康状态;被评估对象初始损伤向量do的元素个数等于N,do的元素与被评估对象是一一对应关系,向量do的元素的编号规则与被评估对象的编号规则相同;如果do的某一个元素对应的被评估对象是索系统中的一根支承索,那么do的该元素的数值代表对应支承索的初始损伤程度,若该元素的数值为0,表示该元素所对应的支承索是完好的,没有损伤的,若其数值为100%,则表示该元素所对应的支承索已经完全丧失承载能力,若其数值介于0和100%之间,则表示该支承索丧失了相应比例的承载能力;如果do的某一个元素对应的被评估对象是某一个支座的某一个广义位移分量,那么do的该元素的数值代表这个支座的该广义位移分量的初始数值;如果do的某一个元素对应的被评估对象是某一个载荷,本方法中取do的该元素数值为0,代表这个载荷的变化的初始数值为0;如果没有索结构支座初始广义位移测量数据或者可以认为索结构支座初始广义位移为0时,向量do中与索结构支座广义位移相关的各元素数值取0;如果没有支承索的无损检测数据及其他能够表达支承索的健康状态的数据时,或者可以认为结构初始状态为无损伤无松弛状态时,向量do中与支承索相关的各元素数值取0;初始索结构支座广义坐标数据指索结构设计状态下的支座广义坐标数据,索结构支座初始广义位移测量数据指在建立初始力学计算基准模型Ao时,索结构支座相对于索结构设计状态下的支座所发生的广义位移;在测量计算得到初始索结构的实测数据的同时,实测或查资料得到索结构所使用的各种材料的物理和力学性能参数,直接测量计算得到所有支承索的初始索力,组成初始索力向量Fo;依据包括索结构设计数据、竣工数据在内的数据得到所有支承索在自由状态即索力为0时的长度、在自由状态时的横截面面积和在自由状态时的单位长度的重量,依次组成支承索的初始自由长度向量、初始自由横截面面积向量和初始自由单位长度的重量向量,支承索的初始自由长度向量、初始自由横截面面积向量和初始自由单位长度的重量向量的元素的编号规则与初始索力向量Fo的元素的编号规则相同;c.根据索结构的设计图、竣工图和初始索结构的实测数据、支承索初始健康状态数据、索结构支座初始广义位移测量数据、索结构集中载荷测量数据、索结构分布载荷测量数据、索结构体积载荷测量数据、索结构所使用的各种材料的物理和力学性能参数和前面步骤得到的所有的索结构数据,建立索结构的初始力学计算基准模型Ao,基于Ao计算得到的索结构计算数据必须非常接近其实测数据,其间的差异不得大于5%;对应于Ao的被评估对象健康状态用被评估对象初始损伤向量do表示;对应于Ao的所有被监测量的初始数值用被监测量初始数值向量Co表示;do是Ao的参数,由Ao的力学计算结果得到的所有被监测量的初始数值与Co表示的所有被监测量的初始数值相同,因此也可以说Co由Ao的力学计算结果组成;d.从这里进入由第d步到第k步的循环;e.在初始力学计算基准模型Ao的基础上按照步骤e1至e3进行若干次力学计算,通过计算获得索结构单位损伤被监测量数值变化矩阵ΔC和被评估对象单位变化向量Du;e1.在索结构的初始力学计算基准模型Ao的基础上进行若干次力学计算,计算次数数值上等于所有被评估对象的数量N,有N个评估对象就有N次计算;依据被评估对象的编号规则,依次进行计算;每一次计算假设只有一个被评估对象在原有损伤或广义位移或载荷的基础上再增加单位损伤或单位广义位移或载荷单位变化,具体的,如果该被评估对象是索系统中的一根支承索,那么就假设该支承索在向量do表示的该支承索已有损伤的基础上再增加单位损伤,如果该被评估对象是一个支座的一个方向的广义位移分量,就假设该支座在该位移方向再增加单位广义位移,如果该被评估对象是一个载荷,就假设该载荷在向量do表示的该载荷已有变化量的基础上再增加载荷单位变化,用Duk记录这一增加的单位损伤或单位广义位移或载荷单位变化,其中k表示增加单位损伤或单位广义位移或载荷单位变化的被评估对象的编号,Duk是被评估对象单位变化向量Du的一个元素,被评估对象单位变化向量Du的元素的编号规则与向量do的元素的编号规则相同;每一次计算中增加单位损伤或单位广义位移或载荷单位变化的被评估对象不同于其它次计算中增加单位损伤或单位广义位移或载荷单位变化的被评估对象,每一次计算都利用力学方法计算索结构的所有被监测量的当前计算值,每一次计算得到的所有被监测量的当前计算值组成一个被监测量计算当前向量,被监测量计算当前向量的元素编号规则与被监测量初始数值向量Co的元素编号规则相同;e2.每一次计算得到的被监测量计算当前向量减去被监测量初始数值向量Co得到一个向量,再将该向量的每一个元素都除以该次计算所假设的单位损伤或单位广义位移或载荷单位变化数值,得到一个被监测量单位变化向量,有N个被评估对象就有N个被监测量单位变化向量;e3.由这N个被监测量单位变化向量按照N个被评估对象的编号规则,依次组成有N列的索结构单位损伤被监测量数值变化矩阵ΔC;索结构单位损伤被监测量数值变化矩阵ΔC的每一列对应于一个被监测量单位变化向量;索结构单位损伤被监测量数值变化矩阵ΔC的每一行对应于同一个被监测量在不同被评估对象增加单位损伤或单位广义位移或载荷单位变化时的不同的单位变化程度;索结构单位损伤被监测量数值变化矩阵ΔC的列的编号规则与向量do的元素的编号规则相同,索结构单位损伤被监测量数值变化矩阵ΔC的行的编号规则与M个被监测量的编号规则相同;f.实测得到索结构的所有被监测量的当前实测数值,组成被监测量当前数值向量C;被监测量当前数值向量C和被监测量初始数值向量Co的定义方式相同,两个向量的相同编号的元素表示同一被监测量在不同时刻的具体数值;在实测得到被监测量当前数值向量C的同一时刻,实测得到索结构中所有M1根支承索的索力数据,所有这些索力数据组成当前索力向量F,向量F的元素与向量Fo的元素的编号规则相同;在实测得到被监测量当前数值向量C的同一时刻,实测计算得到所有M1根支承索的两个支承端点的空间坐标,两个支承端点的空间坐标在水平方向分量的差就是两个支承端点水平距离,所有支承索的两个支承端点水平距离数据组成当前支承索两支承端点水平距离向量,当前支承索两支承端点水平距离向量的元素的编号规则与初始索力向量Fo的元素的编号规则相同;g.定义被评估对象当前名义损伤向量d,被评估对象当前名义损伤向量d的元素个数等于被评估对象的数量,被评估对象当前名义损伤向量d的元素和被评估对象之间是一一对应关系,被评估对象当前名义损伤向量d的元素数值代表对应被评估对象的名义损伤程度或名义广义位移或名义载荷变化量;向量d的元素的编号规则与向量do的元素的编号规则相同;h.依据被监测量当前数值向量C同被监测量初始数值向量Co、索结构单位损伤被监测量数值变化矩阵ΔC和待求的被评估对象当前名义损伤向量d间存在的近似线性关系,该近似线性关系可表达为式1,式1中除d外的其它量均为已知,求解式1就可以算出被评估对象当前名义损伤向量d;C=Co+ΔC·d式1i.定义被评估对象当前实际损伤向量da,被评估对象当前实际损伤向量da的元素个数等于被评估对象的数量,被评估对象当前实际损伤向量da的元素和被评估对象之间是一一对应关系,被评估对象当前实际损伤向量da的元素数值代表对应被评估对象的实际损伤程度或实际广义位移或实际载荷变化量;向量da的元素的编号规则与向量do的元素的编号规则相同;j.利用式2表达的被评估对象当前实际损伤向量da的第k个元素dak同被评估对象初始损伤向量do的第k个元素dok和被评估对象当前名义损伤向量d的第k个元素dk间的关系,计算得到被评估对象当前实际损伤向量da的所有元素;式2中k=1,2,3,…….,N,dak表示第k个被评估对象的当前实际健康状态,dak为0时表示第k个被评估对象无健康问题,dak数值不为0时表示第k个被评估对象是有健康问题的被评估对象,如果该被评估对象是索系统中的一根支承索,那么dak表示其当前健康问题的严重程度,有健康问题的支承索可能是松弛索、也可能是受损索,dak数值反应了该支承索的松弛或损伤的程度;从这些有健康问题的支承索中鉴别出受损索,剩下的就是松弛索,被评估对象当前实际损伤向量da中与松弛索对应于的元素数值表达的是与松弛索松弛程度力学等效的当前实际等效损伤程度;如果该被评估对象是一个支座的一个广义位移分量,那么dak表示其当前实际广义位移数值;如果该被评估对象是一个载荷,那么dak表示该载荷的实际变化量;鉴别出松弛索后,利用被评估对象当前实际损伤向量da表达的这些松弛索的、与其松弛程度力学等效的当前实际等效损伤程度,利用在第f步获得的当前索力向量F和当前支承索两支承端点水平距离向量,利用在第b步获得的支承索的初始自由长度向量、初始自由横截面面积向量和初始自由单位长度的重量向量、初始索力向量Fo,利用在第b步获得的索结构所使用的各种材料的物理和力学性能参数,通过将松弛索同受损索进行力学等效来计算松弛索的、与当前实际等效损伤程度等效的松弛程度,力学等效条件是:一、两等效的索的无松弛和无损伤时的初始自由长度、几何特性参数、密度及材料的力学特性参数相同;二、松弛或损伤后,两等效的松弛索和损伤索的索力和变形后的总长相同;满足上述两个力学等效条件时,这样的两根支承索在索结构中的力学功能就是完全相同的,即如果用等效的松弛索代替受损索后,索结构不会发生任何变化,反之亦然;依据前述力学等效条件求得那些被判定为松弛索的松弛程度,松弛程度就是支承索自由长度的改变量,也就是确定了那些需调整索力的支承索的索长调整量;这样就实现了支承索的松弛识别和损伤识别;本方法将受损索和松弛索统称为有健康问题的支承索,简称为问题索,所以根据被评估对象当前实际损伤向量da能够识别出问题索,确定有哪些支座发生了广义位移及其数值,能够确定有哪些载荷发生了变化及其变化的数值;至此本方法实现了剔除支座广义位移和载荷变化的影响的、索结构的问题索识别,实现了剔除载荷变化和支承索健康状态变化影响的、支座广义位移的识别,实现了剔除支座广义位移和支承索健康状态变化影响的、载荷变化量的识别;至此本方法以一种有效的、廉价的方法实现了核心被评估对象的健康状态的准确识别;对次要被评估对象的健康状态的识别结果偏离准确值较多,因此不予采信,在本方法中仅要求正确识别核心被评估对象的健康状态;k.回到第d步,开始由第d步到第k步的下一次循环。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201510439148.X/,转载请声明来源钻瓜专利网。