[发明专利]模型训练方法及装置有效

专利信息
申请号: 201510456763.1 申请日: 2015-07-29
公开(公告)号: CN105046366B 公开(公告)日: 2018-06-08
发明(设计)人: 金涬;李毅;邹永强;郭志懋;薛伟;肖磊 申请(专利权)人: 腾讯科技(深圳)有限公司
主分类号: G06N3/04 分类号: G06N3/04;G06N3/08;G06F17/30
代理公司: 北京三高永信知识产权代理有限责任公司 11138 代理人: 张所明
地址: 518000 广东省深圳*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种模型训练方法及装置,属于计算机技术领域。所述方法包括:构造代价函数为非凸函数的模型;获取训练样本集,所述训练样本集包括用于训练所述模型的各个训练样本,每个训练样本包括用户特征、内容特征和用户对内容所采取的实际行为所对应的操作值;根据所述训练样本集对所述模型进行训练,得到n个候选模型,n为大于1的正整数;将所述n个候选模型中质量最好的候选模型确定为本次训练得到的预估模型。本发明解决了代价函数为非凸函数的预估模型的模型质量波动大的问题,达到了提高最终训练得到的预估模型的模型质量的效果。
搜索关键词: 预估 训练样本集 候选模型 代价函数 模型训练 训练样本 凸函数 计算机技术领域 内容特征 实际行为 用户特征 质量波动 正整数
【主权项】:
一种模型训练方法,其特征在于,所述方法包括:构造代价函数为非凸函数的模型,其中,所述代价函数为所述非凸函数的所述模型在训练过程中的模型质量存在波动;获取构造的所述模型的上线时间;根据在所述上线时间之前的预定时段内的样本生成测试样本集,所述预定时段的结束时间与所述上线时间之间的差值小于预定阈值;根据在所述预定时段外的样本生成训练样本集;获取所述训练样本集,所述训练样本集包括用于训练所述模型的各个训练样本,每个训练样本包括用户特征、内容特征和用户对内容所采取的实际行为所对应的操作值;根据所述训练样本集对所述模型进行训练,得到n个候选模型,n为大于1的正整数;将所述n个候选模型中质量最好的候选模型确定为本次训练得到的预估模型,所述预估模型用于预估内容点击率,且所述预估模型的质量与所述内容点击率的准确性呈正相关关系。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于腾讯科技(深圳)有限公司,未经腾讯科技(深圳)有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201510456763.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top