[发明专利]一种张量模式下基于极限学习机的模式识别方法在审
申请号: | 201510531563.8 | 申请日: | 2015-08-26 |
公开(公告)号: | CN105069485A | 公开(公告)日: | 2015-11-18 |
发明(设计)人: | 曾德威;王书强;申妍燕;胡金星;卢哲 | 申请(专利权)人: | 中国科学院深圳先进技术研究院 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 深圳市科进知识产权代理事务所(普通合伙) 44316 | 代理人: | 宋鹰武 |
地址: | 518055 广东省深圳*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供一种张量模式下基于极限学习机的模式识别方法,包括以下步骤:将数据集以张量模式输入并为所述数据集内的数据设置标签;计算所述数据集内的数据各阶对应的Fisher最优投影;设置隐层节点数量及激励函数的类型;根据Fisher最优投影随机产生各个所述节点的输入权值;随机产生各个所述节点的偏移标量;计算隐层输出矩阵;对所述隐层输出矩阵求逆;统计所述数据集内相异的标签数量C,自动设置输出节点数量为C,并将全部所述标签以C维向量表示;计算输出权值;构建张量分类器,以及对所述数据集进行模式识别。本发明提出的模式识别方法能够直接在张量领域处理数据,用于高效准确识别当前数据所属模式或类别的模式识别模型。 | ||
搜索关键词: | 一种 张量 模式 基于 极限 学习机 模式识别 方法 | ||
【主权项】:
一种张量模式下基于极限学习机的模式识别方法,其特征在于包括以下步骤:将数据集以张量模式输入并为所述数据集内的数据设置标签;计算所述数据集内的数据各阶对应的Fisher最优投影;设置隐层节点数量及激励函数的类型;根据Fisher最优投影随机产生各个所述节点的输入权值;随机产生各个所述节点的偏移标量;计算隐层输出矩阵;对所述隐层输出矩阵求逆;统计所述数据集内相异的标签数量c,自动设置输出节点数量为c,并将全部所述标签以c维向量表示;计算输出权值;构建张量分类器;以及对所述数据集进行模式识别,设所述张量分类器的输出层有c个节点,如果第i个节点的输出值最大,则所述张量分类器的识别结果为第i类,其中i≤c。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院深圳先进技术研究院,未经中国科学院深圳先进技术研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201510531563.8/,转载请声明来源钻瓜专利网。