[发明专利]一种易于终极边界估计的Lorenz型超混沌系统自适应同步方法及电路在审

专利信息
申请号: 201510570292.7 申请日: 2015-09-09
公开(公告)号: CN105119707A 公开(公告)日: 2015-12-02
发明(设计)人: 王晓红 申请(专利权)人: 王晓红
主分类号: H04L9/00 分类号: H04L9/00
代理公司: 暂无信息 代理人: 暂无信息
地址: 256603 山东省滨州*** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种混沌系统及电路,特别涉及一种易于终极边界估计的Lorenz型超混沌系统自适应同步方法及电路,一种易于终极边界估计的Lorenz型超混沌系统自适应同步电路由驱动系统电路通过2个控制器电路驱动响应系统电路,本发明在Lorenz型混沌系统的基础上,构造一种用于终极边界估计的Lorenz型超混沌系统,并采用自适应同步方法设计并实现了一个模拟电路,为混沌的自适应同步及控制提供了新的超混沌系统信号源。
搜索关键词: 一种 易于 终极 边界 估计 lorenz 混沌 系统 自适应 同步 方法 电路
【主权项】:
一种易于终极边界估计的Lorenz型超混沌系统自适应同步方法,其特征在于,包括以下步骤:(1)Lorenz型混沌系统i为:<mrow><mfenced open = "{" close = ""><mtable><mtr><mtd><mtable><mtr><mtd><mrow><mi>d</mi><mi>x</mi><mo>/</mo><mi>d</mi><mi>t</mi><mo>=</mo><mi>a</mi><mrow><mo>(</mo><mi>y</mi><mo>-</mo><mi>x</mi><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mi>d</mi><mi>y</mi><mo>/</mo><mi>d</mi><mi>t</mi><mo>=</mo><mi>b</mi><mi>x</mi><mo>-</mo><mi>x</mi><mi>z</mi><mo>-</mo><mi>c</mi><mi>y</mi></mrow></mtd></mtr><mtr><mtd><mrow><mi>d</mi><mi>z</mi><mo>/</mo><mi>d</mi><mi>t</mi><mo>=</mo><mi>x</mi><mi>y</mi><mo>-</mo><mi>d</mi><mi>z</mi></mrow></mtd></mtr></mtable></mtd><mtd><mrow><mi>a</mi><mo>=</mo><mn>12</mn><mo>,</mo><mi>b</mi><mo>=</mo><mn>23</mn><mo>,</mo><mi>c</mi><mo>=</mo><mn>1</mn><mo>,</mo><mi>d</mi><mo>=</mo><mn>2.1</mn></mrow></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mi>i</mi></mrow>式中x,y,z为状态变量,a,b,c,d为系统参数;(2)在混沌系统i上增加一维变量w:du/dt=‑kx‑ru k=5,r=0.1            ii式中w为状态变量,k,r为系统参数;(3)把变量ii作为一维系统变量,加在Lorenz型混沌系统i的第二方程上,获得一种易于终极边界估计的Lorenz型超混沌系统iii为:<mrow><mfenced open = "{" close = ""><mtable><mtr><mtd><mtable><mtr><mtd><mrow><mi>d</mi><mi>x</mi><mo>/</mo><mi>d</mi><mi>t</mi><mo>=</mo><mi>a</mi><mrow><mo>(</mo><mi>y</mi><mo>-</mo><mi>x</mi><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mi>d</mi><mi>y</mi><mo>/</mo><mi>d</mi><mi>t</mi><mo>=</mo><mi>b</mi><mi>x</mi><mo>-</mo><mi>x</mi><mi>z</mi><mo>-</mo><mi>x</mi><mi>z</mi><mo>-</mo><mi>c</mi><mi>y</mi><mo>+</mo><mi>u</mi></mrow></mtd></mtr><mtr><mtd><mrow><mi>d</mi><mi>z</mi><mo>/</mo><mi>d</mi><mi>t</mi><mo>=</mo><mi>x</mi><mi>y</mi><mo>-</mo><mi>d</mi><mi>z</mi></mrow></mtd></mtr><mtr><mtd><mrow><mi>d</mi><mi>u</mi><mo>/</mo><mi>d</mi><mi>t</mi><mo>=</mo><mo>-</mo><mi>k</mi><mi>x</mi><mo>-</mo><mi>r</mi><mi>u</mi></mrow></mtd></mtr></mtable></mtd><mtd><mrow><mi>a</mi><mo>=</mo><mn>12</mn><mo>,</mo><mi>b</mi><mo>=</mo><mn>23</mn><mo>,</mo><mi>c</mi><mo>=</mo><mn>1</mn><mo>,</mo><mi>d</mi><mo>=</mo><mn>2.1</mn><mo>,</mo><mi>k</mi><mo>=</mo><mn>5</mn><mo>,</mo><mi>r</mi><mo>=</mo><mn>0.1</mn></mrow></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mi>i</mi><mi>i</mi><mi>i</mi></mrow>式中x,y,z,w为状态变量,参数值a=12,b=23,c=1,d=2.1,k=5,r=0.1;(4)以iii所述一种易于终极边界估计的Lorenz型超混沌系统为驱动系统iv:<mrow><mfenced open = "{" close = ""><mtable><mtr><mtd><mrow><msub><mi>dx</mi><mn>1</mn></msub><mo>/</mo><mi>d</mi><mi>t</mi><mo>=</mo><mi>a</mi><mrow><mo>(</mo><msub><mi>y</mi><mn>1</mn></msub><mo>-</mo><msub><mi>x</mi><mn>1</mn></msub><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>dy</mi><mn>1</mn></msub><mo>/</mo><mi>d</mi><mi>t</mi><mo>=</mo><msub><mi>bx</mi><mn>1</mn></msub><mo>-</mo><msub><mi>y</mi><mn>1</mn></msub><mo>-</mo><msub><mi>x</mi><mn>1</mn></msub><msub><mi>z</mi><mn>1</mn></msub><mo>+</mo><msub><mi>u</mi><mn>1</mn></msub></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>dz</mi><mn>1</mn></msub><mo>/</mo><mi>d</mi><mi>t</mi><mo>=</mo><msub><mi>x</mi><mn>1</mn></msub><msub><mi>y</mi><mn>1</mn></msub><mo>-</mo><msub><mi>cz</mi><mn>1</mn></msub></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>du</mi><mn>1</mn></msub><mo>/</mo><mi>d</mi><mi>t</mi><mo>=</mo><mo>-</mo><msub><mi>kx</mi><mn>1</mn></msub><mo>-</mo><msub><mi>ru</mi><mn>1</mn></msub></mrow></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mi>i</mi><mi>v</mi></mrow>式中x1,y1,z1,u1为状态变量,参数值a=12,b=23,c=1,d=2.1,k=5,r=0.1;(5)以iii所述一种易于终极边界估计的Lorenz型超混沌系统为响应系统v:<mrow><mfenced open = "{" close = ""><mtable><mtr><mtd><mrow><msub><mi>dx</mi><mn>2</mn></msub><mo>/</mo><mi>d</mi><mi>t</mi><mo>=</mo><mi>a</mi><mrow><mo>(</mo><msub><mi>y</mi><mn>2</mn></msub><mo>-</mo><msub><mi>x</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>+</mo><msub><mi>v</mi><mn>1</mn></msub></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>dy</mi><mn>2</mn></msub><mo>/</mo><mi>d</mi><mi>t</mi><mo>=</mo><msub><mi>bx</mi><mn>2</mn></msub><mo>-</mo><msub><mi>y</mi><mn>2</mn></msub><mo>-</mo><msub><mi>x</mi><mn>2</mn></msub><msub><mi>z</mi><mn>2</mn></msub><mo>+</mo><msub><mi>u</mi><mn>2</mn></msub><mo>+</mo><msub><mi>v</mi><mn>2</mn></msub></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>dz</mi><mn>2</mn></msub><mo>/</mo><mi>d</mi><mi>t</mi><mo>=</mo><msub><mi>x</mi><mn>2</mn></msub><msub><mi>y</mi><mn>2</mn></msub><mo>-</mo><msub><mi>cz</mi><mn>2</mn></msub><mo>+</mo><msub><mi>v</mi><mn>3</mn></msub></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>du</mi><mn>2</mn></msub><mo>/</mo><mi>d</mi><mi>t</mi><mo>=</mo><mo>-</mo><msub><mi>kx</mi><mn>2</mn></msub><mo>-</mo><msub><mi>ru</mi><mn>2</mn></msub><mo>+</mo><msub><mi>v</mi><mn>4</mn></msub></mrow></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mi>v</mi></mrow>式中x2,y2,z2,u2为状态变量,v1,v2,v3,v4为控制器,参数值参数值a=12,b=23,c=1,d=2.1,k=5,r=0.1;(6)定义误差系统e1=(x2‑x1),e2=(z2‑z1),当控制器取如下值时,驱动混沌系统iv和响应系统v实现自适应同步;<mrow><mfenced open = "{" close = ""><mtable><mtr><mtd><mrow><msub><mi>v</mi><mn>1</mn></msub><mo>=</mo><mo>-</mo><msub><mi>e</mi><mn>1</mn></msub><mo>&Integral;</mo><msubsup><mi>e</mi><mn>1</mn><mn>2</mn></msubsup><mi>d</mi><mi>t</mi></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>v</mi><mn>2</mn></msub><mo>=</mo><mn>0</mn></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>v</mi><mn>3</mn></msub><mo>=</mo><mo>-</mo><msub><mi>e</mi><mn>2</mn></msub><mo>&Integral;</mo><msubsup><mi>e</mi><mn>2</mn><mn>2</mn></msubsup><mi>d</mi><mi>t</mi></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>v</mi><mn>4</mn></msub><mo>=</mo><mn>0</mn></mrow></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mi>v</mi><mi>i</mi></mrow>(7)由驱动混沌系统iv和响应混沌系统v组成的混沌自适应同步电路为:<mrow><mfenced open = "{" close = ""><mtable><mtr><mtd><mrow><msub><mi>dx</mi><mn>1</mn></msub><mo>/</mo><mi>d</mi><mi>t</mi><mo>=</mo><mi>a</mi><mrow><mo>(</mo><msub><mi>y</mi><mn>1</mn></msub><mo>-</mo><msub><mi>x</mi><mn>1</mn></msub><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>dy</mi><mn>1</mn></msub><mo>/</mo><mi>d</mi><mi>t</mi><mo>=</mo><msub><mi>bx</mi><mn>1</mn></msub><mo>-</mo><msub><mi>y</mi><mn>1</mn></msub><mo>-</mo><msub><mi>x</mi><mn>1</mn></msub><msub><mi>z</mi><mn>1</mn></msub><mo>+</mo><msub><mi>u</mi><mn>1</mn></msub></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>dz</mi><mn>1</mn></msub><mo>/</mo><mi>d</mi><mi>t</mi><mo>=</mo><msub><mi>x</mi><mn>1</mn></msub><msub><mi>y</mi><mn>1</mn></msub><mo>-</mo><msub><mi>cz</mi><mn>1</mn></msub></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>du</mi><mn>1</mn></msub><mo>/</mo><mi>d</mi><mi>t</mi><mo>=</mo><mo>-</mo><msub><mi>kx</mi><mn>1</mn></msub><mo>-</mo><msub><mi>ru</mi><mn>1</mn></msub></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>dx</mi><mn>2</mn></msub><mo>/</mo><mi>d</mi><mi>t</mi><mo>=</mo><mi>a</mi><mrow><mo>(</mo><msub><mi>y</mi><mn>2</mn></msub><mo>-</mo><msub><mi>x</mi><mn>2</mn></msub><mo>)</mo></mrow><mo>+</mo><msub><mi>u</mi><mn>2</mn></msub><mo>-</mo><mrow><mo>(</mo><msub><mi>x</mi><mn>2</mn></msub><mo>-</mo><msub><mi>x</mi><mn>1</mn></msub><mo>)</mo></mrow><mo>&Integral;</mo><msup><mrow><mo>(</mo><msub><mi>x</mi><mn>2</mn></msub><mo>-</mo><msub><mi>x</mi><mn>1</mn></msub><mo>)</mo></mrow><mn>2</mn></msup><mi>d</mi><mi>t</mi></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>dy</mi><mn>2</mn></msub><mo>/</mo><mi>d</mi><mi>t</mi><mo>=</mo><msub><mi>bx</mi><mn>2</mn></msub><mo>-</mo><msub><mi>y</mi><mn>2</mn></msub><mo>-</mo><msub><mi>x</mi><mn>2</mn></msub><msub><mi>z</mi><mn>2</mn></msub></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>dz</mi><mn>2</mn></msub><mo>/</mo><mi>d</mi><mi>t</mi><mo>=</mo><msub><mi>x</mi><mn>2</mn></msub><msub><mi>y</mi><mn>2</mn></msub><mo>-</mo><msub><mi>cz</mi><mn>2</mn></msub><mo>-</mo><mrow><mo>(</mo><msub><mi>z</mi><mn>2</mn></msub><mo>-</mo><msub><mi>z</mi><mn>1</mn></msub><mo>)</mo></mrow><mo>&Integral;</mo><msup><mrow><mo>(</mo><msub><mi>z</mi><mn>2</mn></msub><mo>-</mo><msub><mi>z</mi><mn>1</mn></msub><mo>)</mo></mrow><mn>2</mn></msup><mi>d</mi><mi>t</mi></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>du</mi><mn>2</mn></msub><mo>/</mo><mi>d</mi><mi>t</mi><mo>=</mo><mo>-</mo><msub><mi>kx</mi><mn>2</mn></msub><mo>-</mo><msub><mi>ru</mi><mn>2</mn></msub></mrow></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mi>v</mi><mi>i</mi><mi>i</mi><mo>.</mo></mrow>
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于王晓红,未经王晓红许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201510570292.7/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top