[发明专利]一种带有徘徊异常提示的分层视频摘要方法有效

专利信息
申请号: 201510594787.3 申请日: 2015-09-17
公开(公告)号: CN105138689B 公开(公告)日: 2019-04-19
发明(设计)人: 杨华;卢瑞鹏;朱继;郑世宝 申请(专利权)人: 上海交通大学
主分类号: G06F16/738 分类号: G06F16/738
代理公司: 上海汉声知识产权代理有限公司 31236 代理人: 徐红银;郭国中
地址: 200240 *** 国省代码: 上海;31
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供了一种带有徘徊异常提示的分层视频摘要方法,适合于视频监控场景下的海量视频快速浏览。步骤:利用高斯混合模型对输入视频进行背景训练和前景检测;基于前景对运动的行人进行跟踪,获取每个行人跟踪的数据集;针对行人跟踪数据集进行特征提取,包括人脸检测、亮度计算和视觉注意力计算;最小化视频层次的能量函数,在每个行人数据集中筛选出一个最具代表性的图像,融合到背景图像上,形成视频层次的视频摘要;根据行人跟踪信息,进行运动轨迹的拟合及运动方向的判断;判断是否有徘徊行为发生;最小化行人层次的能量函数,从行人跟踪数据集中筛选出最具代表性的几张图片;将行人的多种信息融合到背景图像上,生成行人层次的摘要。
搜索关键词: 一种 带有 徘徊 异常 提示 分层 视频 摘要 方法
【主权项】:
1.一种带有徘徊异常提示的分层视频摘要方法,其特征在于,所述方法将视频摘要分为视频层次和行人层次两个层次,行人层次的摘要具有徘徊异常提示的功能;所述方法包括以下步骤:第一步:对视频数据进行预处理,得到背景图像和对视频中每个行人跟踪的数据集;第二步:针对第一步得到的行人跟踪数据集进行特征提取,包括人脸检测、亮度计算和视觉注意力计算,用于生成视频层次的能量函数;第三步:最小化第二步生成的能量函数,用于从第一步每个行人数据集中筛选出一个最具代表性的图像,融合到背景图像上,形成视频层次的视频摘要;第四步:根据第一步的行人跟踪的数据集,进行运动轨迹的拟合及运动方向的判断,用于生成行人层次的摘要信息;第五步:根据第一步的行人跟踪的数据集判断是否有徘徊行为发生;第六步:根据第一步的行人跟踪的数据集进行特征提取,包括空间分布、行人外表变化、图像亮度及碰撞程度,生成行人层次的能量函数,然后对其进行最小化,目的是从第一步的行人跟踪数据集中筛选出最具信息量的图片集合,用于生成行人层次的摘要信息;第七步:将第四步到第六步获得行人的多种信息融合到背景图像上,生成行人层次的摘要,该摘要具有徘徊异常提示的功能;所述第二步,具体为:让T={t1,...,tM}表示M个行人的跟踪数据集,其中表示行人Xi的跟踪数据集;让视觉注意力代表图像的重要性或吸引力:其中D(IK,Ii)表示像素点IK和Ii在Lab颜色空间的距离,area(Xji)表示图像Xji的面积,Xji代表视频中第i个行人的第j个跟踪结果;让代表图像的明暗程度:其中IY表示图像Xji的灰度图;表示图像亮度;让代表图像中是否有正脸检测到:
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海交通大学,未经上海交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201510594787.3/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top