[发明专利]一种基于张量分解的缺失关联规则挖掘方法有效
申请号: | 201510631132.9 | 申请日: | 2015-09-29 |
公开(公告)号: | CN105224507A | 公开(公告)日: | 2016-01-06 |
发明(设计)人: | 周天和;卢晓飞;蔡荣;张元元;张帆 | 申请(专利权)人: | 杭州天宽科技有限公司 |
主分类号: | G06F17/16 | 分类号: | G06F17/16 |
代理公司: | 杭州之江专利事务所(普通合伙) 33216 | 代理人: | 张慧英 |
地址: | 310000 浙江省杭州市*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于张量分解的缺失关联规则挖掘方法,包括如下步骤:(1)每个节点对自身所带的局部数据进行局部相关,在每个节点上运用先验算法发现局部关联规则,得到节点的局部置信度;(2)利用节点网络、每个节点的局部关联规则及权重矩阵建立基于张量的全局相关模型;(3)通过CP分解方法分解全局相关模型中的张量置信度,并使用共轭梯度算法计算得到近似张量置信度;(4)当存在缺失数据的情况下,利用分布式算法结合局部置信度与近似张量置信度得到接近缺失值的置信度张量,发现缺失关联规则。本方法能够更好地处理云计算环境中的海量数据,具有优越性。 | ||
搜索关键词: | 一种 基于 张量 分解 缺失 关联 规则 挖掘 方法 | ||
【主权项】:
一种基于张量分解的缺失关联规则挖掘方法,其特征在于包括如下步骤:(1)每个节点对自身所带的局部数据进行局部相关,在每个节点上运用先验算法发现局部关联规则,得到节点的局部置信度;(2)利用节点网络、每个节点的局部关联规则及权重矩阵建立基于张量的全局相关模型;(3)通过CP分解方法分解全局相关模型中的张量置信度,并使用共轭梯度算法计算得到近似张量置信度;(4)当存在缺失数据的情况下,利用分布式算法结合局部置信度与近似张量置信度得到接近缺失值的置信度张量,发现缺失关联规则。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州天宽科技有限公司,未经杭州天宽科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201510631132.9/,转载请声明来源钻瓜专利网。