[发明专利]协变局部特征聚集的图像特征表示法有效
申请号: | 201510710221.2 | 申请日: | 2015-10-28 |
公开(公告)号: | CN105335500B | 公开(公告)日: | 2018-11-20 |
发明(设计)人: | 赵万磊;王菡子 | 申请(专利权)人: | 厦门大学 |
主分类号: | G06F17/30 | 分类号: | G06F17/30 |
代理公司: | 厦门南强之路专利事务所(普通合伙) 35200 | 代理人: | 马应森 |
地址: | 361005 *** | 国省代码: | 福建;35 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 协变局部特征聚集的图像特征表示法,涉及计算机视觉与多媒体信息检索。提取图像局部特征;离线训练一个小的视觉词汇集合;将每幅图的局部特征用简化的费舍尔核方法进行聚集;聚集时,同时考虑每个局部特征的主方向信息,将主方向分为8个量化区间,根据量化后的主方向值,聚集到不同的费舍尔子向量,8个子向量拼接为一个长向量,作为图像的特征表示;将8个费舍尔子向量重组得一系列8维的子向量。对每个子向量进行一维离散余弦变换,变换到该特征的频率域;再对频率域的特征重组,得不同频段的8个子向量,对每个子向量做主成分分析,再对降维后的8个子向量重组得一系列8维的子向量;在子向量上定义相似度度量,以计算图像两两间的相似度。 | ||
搜索关键词: | 局部 特征 聚集 图像 表示 | ||
【主权项】:
1.协变局部特征聚集的图像特征表示方法,其特征在于包括以下步骤:1)提取图像的局部特征,采用描述子进行描述,一幅图像被表示为一系列描述子的集合χ,同时获得每个局部特征的主方向θ;2)用一个独立的图像集,提取并收集其局部特征,从而生成一个由描述子组成的矩阵;采用K平均聚类算法,获得K个聚类中心,K一般设为32至64之间的一个整数值,K个聚类中心作为视觉词汇集C={c1,c2,...,cK};3)采用如下公式(1)对一幅图的每个局部特征进行简化的费舍尔聚集:其中,q(x)在C中找到最近邻ci,b=B(θ);ci为视觉词汇集C={c1,c2,...,cK}中离局部特征x,x∈χ,最近的视觉词汇;函数B(θ)对图像局部特征x的主方向θ进行量化,主方向量化为8个量化区段,公式(1)将一个图像的一系列描述子转化为一个长的向量Y表示,根据主方向的量化值,长向量又分为多个子向量,由于使用8个量化区段,因此有8个子向量,即Y={P1,P2,...,P8};4)将获得的8个费舍尔子向量重组,获得一系列8维的子向量;5)再对所述一系列8维的子向量组成的向量进行重组,把所有8维的子向量对应维度放到一起,依次排列,获得8个子向量;如果把离散余弦变换得到一系列8维的子向量看作一个有8列的矩阵,这个重组操作相当于对矩阵进行转置;然后,对重组后得到的每个子向量做主成分分析,以降低整个特征的维度;6)再对降维之后的8个子向量进行重组;7)在由一系列8维的子向量拼合成的向量上定义距离度量,以衡量图像两两之间的相似度;距离度量如以下公式(3):其中,||ui||2=||vi||2=1,d是子向量的个数,U和V分别为两幅图像经步骤1)~6)获得的向量表示,ui和vi是它们的各自的子向量;这里假设它们分别由d个子向量组成;子向量ui和vi进行内积运算。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于厦门大学,未经厦门大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201510710221.2/,转载请声明来源钻瓜专利网。
- 上一篇:用于电子商城的订单数据处理方法和装置
- 下一篇:一种排序方法及其装置
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序