[发明专利]基于背景更新的无线传感器网络入侵检测方法在审

专利信息
申请号: 201510780924.2 申请日: 2015-11-13
公开(公告)号: CN105451235A 公开(公告)日: 2016-03-30
发明(设计)人: 王洪玉;红霞;吴立飞;孙立奎;陶铮;张潇 申请(专利权)人: 大连理工大学
主分类号: H04W12/12 分类号: H04W12/12;H04W24/06;H04W64/00;H04W84/18
代理公司: 大连理工大学专利中心 21200 代理人: 温福雪
地址: 116024 辽*** 国省代码: 辽宁;21
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供了一种基于背景更新的无线传感器网络入侵检测方法,属于无线通信的技术领域。该方法检测步骤为建立背景模型、背景判断和背景模型参数更新。传统的检测算法把相邻两个时刻的信号强度差值作为判断有无入侵者的依据,计算量少,容易实现,但没有数据训练和更新。基于背景更新的入侵检测算法先建立背景模型,再分析当前收集的信息是否与背景模型匹配,由此判断出监测区域有无入侵者,之后自动更新背景模型,此算法的关键是背景建模及其更新,背景信息为了适应环境的改变而实时更新模型参数,所以跟传统的检测算法比较,它的检测率高,误检率也低。
搜索关键词: 基于 背景 更新 无线 传感器 网络 入侵 检测 方法
【主权项】:
一种基于背景更新的无线传感器网络入侵检测方法,其特征在于,以无线传感器网络为检测平台,采用背景更新法实现入侵检测,步骤如下:A、建立背景模型检测平台是由一个无线控制节点和若干个无线扫描节点组成的无线传感器网络;无线扫描节点之间形成多条无线链路,在无人状态下,无线传感器网络所形成的监测区域中采集N轮信号强度,计算每条链路采集到的信号强度的均值和方差,形成N个相对应的背景模型;B、背景判断在无线传感器网络所形成的监测区域中部署若干个位置,目标在上述任意位置采集信号强度,判断新采集到的信号强度是否符合背景模型,当新采集到的信号强度与原背景模型中任何一个单模型不匹配时,表明该新位置出现了新的分布形式,该无线传感器网络所形成的监测区域有入侵者,反之,无入侵者;具体步骤如下:监测区域中目标在任意位置采集一次信号强度,针对每条链路计算有目标和无目标在监测区域中的差值M(m,i),公式如下:M(m,i)=|I(m,n)‑μ(m,i)| i=1,2,...,N   (1)其中I(m,n)指第m条链路在第n个位置采集的信号强度,μ(m,i)为第m条链路第i背景模型的均值,若M(m,i)<C*σ(m,i) i=1,2,...,N   (2)其中σ(m,i)为第m条链路第i背景模型的方差,C为信号强度动态变化指数,判断结果J(m,i)为:当有入侵者时,将原背景模型中权值最小的单模型去掉,将新的分布形式添加到原背景模型集合中,形成新的背景模型,新的背景模型的权值为其中最小的权值,将新的背景模型中的各个单模型的权值均做归一化处理:<mrow><msub><mi>w</mi><mrow><mi>i</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>=</mo><mfrac><msub><mi>w</mi><mrow><mi>i</mi><mo>,</mo><mi>n</mi></mrow></msub><mrow><munderover><mo>&Sigma;</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>w</mi><mrow><mi>j</mi><mo>,</mo><mi>n</mi></mrow></msub></mrow></mfrac><mo>,</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>N</mi><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></mrow>其中wi,n是第n个位置处第i个高斯分布的权重;背景模型和前景部分相比,背景模型权重大,方差小;将背景模型或前景模型的权重和方差相结合,作为背景模型或前景模型的判别标准;采集到的信号强度被判断为入侵者时,该信号强度即为前景部分;判别模型是否是位置点背景模型,位置点背景模型分为背景部分和前景部分:计算每个链路模型中高斯模型的wi,ni,n值,并将其从大到小排列;如果前L个高斯模型满足式(5),则将L个高斯模型作为背景模型;<mrow><mi>B</mi><mo>=</mo><mi>arg</mi><mi> </mi><msub><mi>min</mi><mi>L</mi></msub><mrow><mo>(</mo><munderover><mo>&Sigma;</mo><mrow><mi>k</mi><mo>=</mo><mn>1</mn></mrow><mi>L</mi></munderover><msub><mi>w</mi><mrow><mi>n</mi><mo>,</mo><mi>k</mi></mrow></msub><mo>&gt;</mo><mi>T</mi><mo>)</mo></mrow><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>5</mn><mo>)</mo></mrow></mrow>T为判定模型是否作为背景模型的阈值,T=0.7;C、背景更新运用背景更新法对判定的背景部分和前景部分均建立模型,背景模型按照式(6)(7)(8)更新背景参数,μ(n,i)=(1‑α)μ(n‑1,i)+α*I(n)   (6)σ2(n,i)=(1‑α)σ2(n‑1,i)+α*(I(n)‑μ(n,i))2   (7)<mrow><mi>&alpha;</mi><mo>=</mo><msub><mi>K</mi><mn>0</mn></msub><mo>*</mo><mfrac><mn>1</mn><mrow><msqrt><mrow><mn>2</mn><mi>&pi;</mi></mrow></msqrt><mi>&sigma;</mi><mrow><mo>(</mo><mi>n</mi><mo>-</mo><mn>1</mn><mo>,</mo><mi>i</mi><mo>)</mo></mrow></mrow></mfrac><mi>exp</mi><mo>{</mo><mo>-</mo><mfrac><msup><mrow><mo>(</mo><mi>&mu;</mi><mo>(</mo><mrow><mi>n</mi><mo>,</mo><mi>i</mi></mrow><mo>)</mo><mo>-</mo><mi>I</mi><mo>(</mo><mi>n</mi><mo>)</mo><mo>)</mo></mrow><mn>2</mn></msup><mn>2</mn></mfrac><mo>}</mo><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>8</mn><mo>)</mo></mrow></mrow>其中μ(n,i)和σ(n,i)是监测区域部署的第n位置第i背景模型参数,i的取值为i=1,2...N。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于大连理工大学,未经大连理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201510780924.2/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top