[发明专利]一种基于CNN融合时空显著信息的视频识别分类方法有效

专利信息
申请号: 201510901557.7 申请日: 2015-12-08
公开(公告)号: CN105550699B 公开(公告)日: 2019-02-12
发明(设计)人: 尹宝才;王文通;王立春;孔德慧 申请(专利权)人: 北京工业大学
主分类号: G06K9/62 分类号: G06K9/62;G06N3/08
代理公司: 北京中北知识产权代理有限公司 11253 代理人: 冯梦洪
地址: 100124 *** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于CNN融合时空显著信息的视频识别分类方法,其能够提高视频分类的准确率。该方法包括步骤:(1)对待识别分类视频进行采样得到多个视频片段;(2)将每个视频片段处理为三个序列:原始图像序列、边缘图像序列和光流图像序列;(3)利用卷积神经网络模型针对原始图像序列、边缘图像序列和光流图像序列这三类数据提取特征,并基于这三类特征,计算视频片段隶属于不同类别的概率;(4)融合不同的特征计算得到的类别概率,得到视频片段的分类结果;(5)融合步骤(4)的各视频片段的分类结果,得到视频的分类结果。
搜索关键词: 一种 基于 cnn 融合 时空 显著 信息 视频 识别 分类 方法
【主权项】:
1.一种基于CNN融合时空显著信息的视频识别分类方法,其特征在于,该方法包括以下步骤:(1)对待识别分类视频进行采样得到多个视频片段;(2)将每个视频片段处理为三个序列:原始图像序列、边缘图像序列和光流图像序列;(3)利用卷积神经网络模型针对原始图像序列、边缘图像序列和光流图像序列这三类数据提取特征,并基于这三类特征,计算视频片段隶属于不同类别的概率;(4)融合不同的特征计算得到的类别概率,得到视频片段的分类结果;(5)融合步骤(4)的各视频片段的分类结果,得到视频的分类结果;所述步骤(1)中采样时根据公式(1)‑(3):Sample(video,m,n)={Clip1,Clip2,…Clipk}    (1)l=1+(m+1)*(n‑1)=m*n+n‑m    (2)k=s‑l+1=s‑m*n‑n+m+1    (3)其中video为输入的视频序列,n为采样帧数,m为采样间隔,Clipi(i=1,2,…,k)为采样得到的视频片段,s为视频总帧数,k为采样得到的视频序列数目,l为一个片段的帧数跨度。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京工业大学,未经北京工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201510901557.7/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top