[发明专利]一种基于双字典学习的非局部稀疏表示图像去噪方法有效

专利信息
申请号: 201511023720.0 申请日: 2015-12-30
公开(公告)号: CN105469371B 公开(公告)日: 2018-11-27
发明(设计)人: 王顺凤;张建伟;郑钰辉;朱节中;陈允杰 申请(专利权)人: 南京信息工程大学
主分类号: G06T5/00 分类号: G06T5/00
代理公司: 南京众联专利代理有限公司 32206 代理人: 顾进;叶涓涓
地址: 210044 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明一种基于双字典学习的非局部稀疏表示图像去噪方法改进了Dong非局部稀疏表示模型中所用到传统的Kmeans聚类方法,具体利用聚类中心字典学习方法分析与挖掘各相似类间的相关性,并将这一相关性引入传统的Kmeans聚类方法,以提高聚类的准确性,从而达到增强稀疏表示模型性能的目的。本发明包括:对待去噪图像,利用kmeans聚类方法,产生各类;计算各类中心图片;利用聚类中心字典学习方法,得到各聚类中心的稀疏表示,继而重建各聚类中心图像块;更新传统Kmeans结果中的聚类中心;循环,直至满足结束条件;构建各类对应的紧致PCA字典;构造类内图像片稀疏编码误差项;利用迭代收敛算法求解。
搜索关键词: 一种 基于 字典 学习 局部 稀疏 表示 图像 方法
【主权项】:
1.一种基于双字典学习的非局部稀疏表示图像去噪方法,其特征在于,包括如下步骤:步骤A,对待去噪图像,利用kmeans聚类方法, 产生各类;步骤B,计算各类中心图像块;步骤C,利用聚类中心字典学习方法,得到各聚类中心的稀疏表示,继而重建各聚类中心图像块,所述聚类中心字典学习方法包括以下步骤:用传统方法稀疏表示聚类中心图像块;根据稀疏表示结果与字典,生成稀疏性模式;根据各模块稀疏性模式与相似块快速查找表,构造相关性函数,继而构造相关性矩阵,其中相似性快速查找表记录了与当前图像块最相似的 N个图像块;根据相关性矩阵构造基于相关分析的稀疏性先验模型;建立稀疏性先验模型;利用最大后验概率估计方法估计稀疏性模式,生成新的聚类中心图像块;步骤D,更新传统Kmeans结果中的聚类中心;步骤E,循环步骤A‑D,直至满足结束条件;步骤F,构建各类对应的紧致PCA字典;步骤G,构造类内图像块稀疏编码误差项;步骤H,利用迭代收敛算法对传统稀疏表示模型求解。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京信息工程大学,未经南京信息工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201511023720.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top