[发明专利]基于RBF神经网络的大型风电机组独立变桨控制方法在审

专利信息
申请号: 201610023236.6 申请日: 2016-01-13
公开(公告)号: CN105626378A 公开(公告)日: 2016-06-01
发明(设计)人: 周腊吾;韩兵;田猛;邓宁峰;陈浩;孟凡冬 申请(专利权)人: 湖南世优电气股份有限公司
主分类号: F03D7/02 分类号: F03D7/02;F03D7/04
代理公司: 湘潭市汇智专利事务所(普通合伙) 43108 代理人: 颜昌伟
地址: 411101 湖*** 国省代码: 湖南;43
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于RBF神经网络的大型风电机组独立变桨控制方法,步骤如下:通过采集风轮转速信号得到统一桨距角和电磁转矩;计算风电机组三个桨叶根部弯矩及桨叶方位角;对三个桨叶根部弯矩进行Coleman坐标变换,得到俯仰弯矩和偏航弯矩;通过RBF神经网络自适应控制导出神经网络自适应率,在线调整神经网络权值改善独立变桨系统的叶根弯矩,再经过Coleman逆变换变换成不同桨叶的优化桨距角;将统一桨距角和优化桨距角相加,得到独立变桨控制桨距角,优化桨距角送入变桨执行单元,完成独立变桨。本发明能够快速地实现独立变桨控制,提高变桨伺服系统的工作效率,控制成本低,提高了风电机组的使用寿命。
搜索关键词: 基于 rbf 神经网络 大型 机组 独立 控制 方法
【主权项】:
一种基于RBF神经网络的大型风电机组独立变桨控制方法,包括以下步骤:步骤一:采集风轮转速信号,功率控制器根据风轮转速进行变桨控制和发电机电磁转矩控制的计算,得到风电机组的统一桨距角和发电机的电磁转矩,然后将电磁转矩信号送入风力发电机组的转矩伺服系统,平衡风力发电机的电磁转矩;步骤二:计算风电机组三个桨叶根部弯矩及桨叶方位角;步骤三:对三个桨叶根部弯矩进行Coleman坐标变换,得到固定坐标系下的风力发电机组俯仰弯矩和偏航弯矩;步骤四:以俯仰弯矩和偏航弯矩作为RBF神经网络的输入变量,通过RBF神经网络自适应控制导出神经网络自适应率,在线调整神经网络权值来改善独立变桨系统的叶根弯矩,再经过Coleman逆变换变换成不同桨叶的优化桨距角;步骤五:将步骤一得到的统一桨距角和步骤四得到的优化桨距角相加,得到独立变桨控制桨距角,之后将优化桨距角送入变桨执行单元,完成风电机组独立变桨的执行动作。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于湖南世优电气股份有限公司,未经湖南世优电气股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201610023236.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top