[发明专利]一种基于深度信念网络的视频热度预测方法及其系统有效

专利信息
申请号: 201610027422.7 申请日: 2016-01-15
公开(公告)号: CN105635762B 公开(公告)日: 2018-11-27
发明(设计)人: 陈亮;张俊池;王娜;李霞 申请(专利权)人: 深圳大学
主分类号: H04N21/258 分类号: H04N21/258;G06F17/30
代理公司: 深圳市恒申知识产权事务所(普通合伙) 44312 代理人: 王利彬
地址: 518000 广东*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供了一种基于深度信念网络的视频热度预测方法,包括:根据视频特征选择输入变量并对影响因子进行归一量化,以对训练数据进行预处理;根据所选择的输入变量以及特征重构误差确定单层的限制性玻尔兹曼机重构维数,并通过多层限制性玻尔兹曼机的堆叠和一层BP神经网络以构成深度信念网络;通过全局学习算法对所述深度信念网络进行调整,以获取最优视频预测模型;将待测的视频测试数据放入所述最优视频预测模型中进行热度预测分析以及观看量预测分析。本发明还提供了一种基于深度信念网络的视频热度预测系统。本发明提出了一种基于深度信念网络的在线视频预测模型,将深层神经网络应用于在线视频预测领域,且能提高预测的准确度和可靠性。
搜索关键词: 一种 基于 深度 信念 网络 视频 热度 预测 方法 及其 系统
【主权项】:
1.一种基于深度信念网络的视频热度预测方法,其特征在于,所述方法包括:根据视频特征选择输入变量并对影响因子进行归一量化,以对训练数据进行预处理;根据所选择的输入变量以及特征重构误差确定单层的限制性玻尔兹曼机重构维数,并通过多层限制性玻尔兹曼机的堆叠和一层BP神经网络以构成深度信念网络;通过全局学习算法对所述深度信念网络进行调整,以获取最优视频预测模型;将待测的视频测试数据放入所述最优视频预测模型中进行热度预测分析以及观看量预测分析。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳大学,未经深圳大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201610027422.7/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top