[发明专利]一种基于图书的概念-描述词知识网络的构建方法有效

专利信息
申请号: 201610163737.4 申请日: 2016-03-19
公开(公告)号: CN105808768B 公开(公告)日: 2019-03-26
发明(设计)人: 鲁伟明;龚军;庄越挺;吴飞;魏宝刚 申请(专利权)人: 浙江大学
主分类号: G06F16/35 分类号: G06F16/35;G06F17/27
代理公司: 杭州求是专利事务所有限公司 33200 代理人: 郑海峰
地址: 310027 浙*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于图书的概念‑描述词知识网络的构建方法。基于图书构建概念‑描述词知识网络本质上是一种知识图谱构建技术。本发明首先从数字图书中抽取得到目录项,在此基础上利用分词工具和正则表达式对目录进行预处理。然后训练语言模型将各个词、词相应的特征以及词对应的标注用词嵌入进行表达,进而用词嵌入匹配算法抽取得到目录短语。随后训练分类器将目录短语分类成概念和描述词,通过概念和描述的映射构建得到概念‑描述词知识网络。本发明从图书中构建概念‑描述词知识网络,有效的完成了对图书知识的抽取和分解。
搜索关键词: 一种 基于 图书 概念 描述 知识 网络 构建 方法
【主权项】:
1.一种基于图书的概念‑描述词知识网络的构建方法,其特征在于包括以下步骤:1)预处理图书目录:通过正则表达式去除目录无用的前缀,通过自然语言处理工具将目录分词,保存每个词的词性;2)基于词嵌入匹配算法的短语抽取:在步骤1)的基础上,训练得到词嵌入匹配模型,从该模型中得到各个词、词对应的特征和词对应的标注的词嵌入,通过向量间的计算得到得分最高的标注,最终从图书目录中抽取得到短语;所述的步骤2)包括:2.1)以步骤1)预处理的目录为基础,训练得到词嵌入匹配模型,模型参数为输入特征矩阵α和标注矩阵β;2.2)对目录中的每一个词ω,查询矩阵α得到输入特征Iω,查询矩阵β得到每个标注符号x对应的标注向量Ox;2.3)通过向量间的乘积并做指数归一化得到每一个标注符号的得分,公式如下:其中scorei表示第i个标注符号的得分,exp表示以e为底的指数运算,Iω表示输入的特征向量,Oi表示第i个标注符号的标注向量,是所有得分的总和,用来做归一化;2.4)通过步骤2.3)对每个词选取得分最高的标注符号,最终将词合并得到短语;3)目录短语分类:对步骤2)中得到的目录短语,抽取特征,采用支持向量机分类得到概念和描述词,然后将概念‑描述词对存储到图数据库中。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201610163737.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top