[发明专利]一种基于图书的概念-描述词知识网络的构建方法有效
申请号: | 201610163737.4 | 申请日: | 2016-03-19 |
公开(公告)号: | CN105808768B | 公开(公告)日: | 2019-03-26 |
发明(设计)人: | 鲁伟明;龚军;庄越挺;吴飞;魏宝刚 | 申请(专利权)人: | 浙江大学 |
主分类号: | G06F16/35 | 分类号: | G06F16/35;G06F17/27 |
代理公司: | 杭州求是专利事务所有限公司 33200 | 代理人: | 郑海峰 |
地址: | 310027 浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于图书的概念‑描述词知识网络的构建方法。基于图书构建概念‑描述词知识网络本质上是一种知识图谱构建技术。本发明首先从数字图书中抽取得到目录项,在此基础上利用分词工具和正则表达式对目录进行预处理。然后训练语言模型将各个词、词相应的特征以及词对应的标注用词嵌入进行表达,进而用词嵌入匹配算法抽取得到目录短语。随后训练分类器将目录短语分类成概念和描述词,通过概念和描述的映射构建得到概念‑描述词知识网络。本发明从图书中构建概念‑描述词知识网络,有效的完成了对图书知识的抽取和分解。 | ||
搜索关键词: | 一种 基于 图书 概念 描述 知识 网络 构建 方法 | ||
【主权项】:
1.一种基于图书的概念‑描述词知识网络的构建方法,其特征在于包括以下步骤:1)预处理图书目录:通过正则表达式去除目录无用的前缀,通过自然语言处理工具将目录分词,保存每个词的词性;2)基于词嵌入匹配算法的短语抽取:在步骤1)的基础上,训练得到词嵌入匹配模型,从该模型中得到各个词、词对应的特征和词对应的标注的词嵌入,通过向量间的计算得到得分最高的标注,最终从图书目录中抽取得到短语;所述的步骤2)包括:2.1)以步骤1)预处理的目录为基础,训练得到词嵌入匹配模型,模型参数为输入特征矩阵α和标注矩阵β;2.2)对目录中的每一个词ω,查询矩阵α得到输入特征Iω,查询矩阵β得到每个标注符号x对应的标注向量Ox;2.3)通过向量间的乘积并做指数归一化得到每一个标注符号的得分,公式如下:其中scorei表示第i个标注符号的得分,exp表示以e为底的指数运算,Iω表示输入的特征向量,Oi表示第i个标注符号的标注向量,是所有得分的总和,用来做归一化;2.4)通过步骤2.3)对每个词选取得分最高的标注符号,最终将词合并得到短语;3)目录短语分类:对步骤2)中得到的目录短语,抽取特征,采用支持向量机分类得到概念和描述词,然后将概念‑描述词对存储到图数据库中。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201610163737.4/,转载请声明来源钻瓜专利网。
- 上一篇:群组信息的管理方法及装置
- 下一篇:切分文本分类分层展现系统及其展现方法