[发明专利]一种连铸坯表面纵裂纹的可视化识别方法在审

专利信息
申请号: 201610289751.9 申请日: 2016-05-04
公开(公告)号: CN105911095A 公开(公告)日: 2016-08-31
发明(设计)人: 刘宇;王旭东;姚曼;高亚丽;狄驰;孙丽英;王福旺;王俊尧 申请(专利权)人: 东北电力大学
主分类号: G01N25/72 分类号: G01N25/72;G06N3/08;B22D11/16
代理公司: 吉林市达利专利事务所 22102 代理人: 陈传林
地址: 132012 吉*** 国省代码: 吉林;22
权利要求书: 查看更多 说明书: 查看更多
摘要: 一种连铸坯表面纵裂纹的可视化识别方法,属于钢铁冶金连铸检测技术领域。具体为通过在线检测结晶器铜板热电偶的温度信号,根据铸坯表面纵裂纹在结晶器内的形成及温度分布特点,利用多项式插值算法和OpenGL技术,将结晶器温度差值进行热成像,在提取区域的几何、位置、移动等特征基础之上,建立BP神经网络模型,对铸坯纵裂纹进行检测和识别。其实现步骤为:结晶器温度差值热成像;建立BP神经网络模型;遗传算法优化模型权值和阈值;纵裂纹可视化特征识别。其优点:将结晶器温度差值可视化与纵裂纹智能识别方法相结合,不仅直观呈现了结晶器历史温度及当前时刻状态,同时为铸坯表面纵裂纹识别提供方法,以及铸坯质量在线监控提供技术手段。
搜索关键词: 一种 连铸坯 表面 裂纹 可视化 识别 方法
【主权项】:
一种连铸坯表面纵裂纹的可视化识别方法,其特征在于:将结晶器可视化与智能化识别技术有机结合,在实现结晶器温度差值热成像的基础之上,提取纵裂纹降温区域可视化特征;建立BP神经网络纵裂纹识别模型;采用遗传算法对模型的权值和阈值进行优化;对铸坯表面纵裂纹进行识别检测。其具体检测步骤如下:第一步、结晶器铜板温度差值热成像及可视化特征提取(1)沿结晶器横向布置不少于19列热电偶测点,在线检测结晶器温度值,采用多项式差值算法,对热电偶温度数据进行横向、纵向差值运算,获取铜板整体的二维温度分布;(2)计算铜板n秒温度差值,将相同网格单元当前时刻t的温度T[x,y]与其之前n秒温度的均值做差,根据设定铜板温度差值‑颜色对应关系,绘制结晶器铜板温度差值热像图,实时、准确反映结晶器铜板温度变化;(3)采用阈值分割算法,将热像图中降温异常像素点进行分离,利用八连通判别算法对异常点进行连通性判断,获取降温异常区域;(4)搜索并提取降温区域的温度差值、面积、高度、宽度、高宽比、移动速率以及角度等特征,为纵裂纹识别提供判据;第二步、建立BP神经网络纵裂纹预报模型,确定输入层神经元、隐含层神经元和输出层神经元,共三层BP神经网络(1)确定BP神经网络输入层神经元:以异常区域温度差值、面积、高度、宽度、高宽比、纵向移动速率、角度特征为模型的输入参数,即模型共有7个输入参量;(2)确定BP神经网络输出层神经元:设定1个输出层神经元,若是纵裂纹,则模型输出为1,若不是纵裂纹,模型输出为‑1;(3)确定BP神经网络隐层神经元个数:根据Hecht‑Nielsen的经验公式确定隐层神经元个数,其计算公式为:其中,t是隐含层神经元个数,是向上取整数,n是输入层神经元个数,g是输出层神经元个数,即t为15;第三步、利用遗传算法优化纵裂纹识别模型(1)初始化BP神经网络模型权值和阈值;(2)将BP神经网络权值和阈值进行实数编码,并初始化种群P(0)以及设定相应的遗传算法参数;(3)正向传播纵裂纹可视化特征样本集为X=[X1,X2,X3,…,XP]T,其中,样本k输入向量为Xk=[x1,x2,x3,…,xn](k=1,2,3,…,p),vij(i=1,2,3,…,n;j=1,2,3,…,m)为输入层与隐含层连接权值,Y=[y1,y2,y3,…,ym]是隐含层输出,wjk为隐含层与输出层间连接权值,Ok=[o1,o2,o3,…,op]是BP神经网络模型实际输出,Dk=[d1,d2,d3,…,dp]是BP神经网络模型期望输出,Ek为实际输出与期望输出的误差,隐含层第j个神经元的输出为yj=f(netj)输出层输出为ok=f(netk)当BP神经网络实际输出与期望输出D不相等时,此时存在误差Ek<mrow><msub><mi>E</mi><mi>k</mi></msub><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mrow><mo>(</mo><mi>D</mi><mo>-</mo><mi>O</mi><mo>)</mo></mrow><mn>2</mn></msup><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><msup><mrow><mo>(</mo><msub><mi>d</mi><mi>k</mi></msub><mo>-</mo><msub><mi>o</mi><mi>k</mi></msub><mo>)</mo></mrow><mn>2</mn></msup></mrow>(4)反向传播沿着权值的负梯度方向进行调整权值可以使误差不断减小,即权值的调整量与误差的梯度下降成正比,<mrow><msub><mi>&Delta;w</mi><mrow><mi>j</mi><mi>k</mi></mrow></msub><mo>=</mo><mo>-</mo><mi>&eta;</mi><mfrac><mrow><mo>&part;</mo><msub><mi>E</mi><mi>k</mi></msub></mrow><mrow><mo>&part;</mo><msub><mi>w</mi><mrow><mi>j</mi><mi>k</mi></mrow></msub></mrow></mfrac><mo>,</mo><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>m</mi><mo>;</mo><mi>k</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>q</mi></mrow><mrow><msub><mi>&Delta;v</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><mo>-</mo><mi>&eta;</mi><mfrac><mrow><mo>&part;</mo><msub><mi>E</mi><mi>k</mi></msub></mrow><mrow><mo>&part;</mo><msub><mi>v</mi><mrow><mi>i</mi><mi>j</mi></mrow></msub></mrow></mfrac><mo>,</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>n</mi><mo>;</mo><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>...</mo><mo>,</mo><mi>m</mi></mrow>式中,η—学习速率,设定参数,通常取值范围0<η<1,各层神经元网络连接权值和阈值变化的增量,以及更新迭代各层间神经元连接权值和阈值的迭代公式为,Wjk(n+1)=Wjk(n)+ΔWjkVij(n+1)=Vij(n)+ΔVij(5)通过适应度函数计算个体偏差,适应度函数采用期望输出与实际输出的之间的误差平方的倒数,其计算公式为:<mrow><mi>f</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mn>1</mn><mrow><msub><mi>E</mi><mi>k</mi></msub><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow></mrow></mfrac></mrow>(6)以预先设定的遗传算法参数,结合选择、交叉、变异等操作,得到新的个体P(t+1);(7)重复第三步(5)、(6)操作步骤,直到满足结束条件;(8)将优化后的网络参数进行解码,并作为神经网络的初始值进一步优化;(9)达到BP神经网络训练的目标,停止训练;第四步、纵裂纹可视化特征在线检测与预报(1)基于结晶器温度速率热像图,在线提取纵裂纹降温区域面积、温度差值、高度、宽度、高宽比、纵向移动速率以及角度等可视化特征,并进行归一化处理;(2)利用遗传算法优化的纵裂纹识别模型,将归一化后的异常区域特征输入,预测是否为表面纵裂纹缺陷;(3)若模型输出为小于0,接近于‑1,则是铸坯无纵裂纹缺陷,若输出大于0,接近于1,则判定为铸坯表面存在纵裂纹缺陷,将识别结果发送至中控室,以便对存在缺陷的铸坯进行修磨处理。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东北电力大学,未经东北电力大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201610289751.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top