[发明专利]一种基于评分和用户行为的商品推荐方法在审
申请号: | 201610304794.X | 申请日: | 2016-05-10 |
公开(公告)号: | CN106022865A | 公开(公告)日: | 2016-10-12 |
发明(设计)人: | 薛安荣;孙亚利 | 申请(专利权)人: | 江苏大学 |
主分类号: | G06Q30/06 | 分类号: | G06Q30/06 |
代理公司: | 江苏纵联律师事务所 32253 | 代理人: | 蔡栋 |
地址: | 212013 *** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于评分和用户行为的商品推荐方法,首先针对用户评分数据建立隐因子模型,对商品进行自动聚类,找出隐含的类别或者特征因子,用户兴趣分解成对多个隐含类别的喜爱程度,商品用包含这些隐含特征的权重表示,用户对商品的评分为两者的内积。然后为了解决评分数据稀疏问题,利用用户行为,引入负样本,提取特征,通过逻辑回归模型来估计用户对商品购买的可能性。最后将两者的候选集组合加权进行排序,将排名靠前的商品推荐给用户。该方法利用隐因子模型从单一的评分中发现用户多元化的兴趣,挖掘出商品多特征的信息,更加符合实际应用,引入负样本,使得用户兴趣区别性更大,推荐结果质量更高,更能满足用户的需求,可应用于商品推荐。 | ||
搜索关键词: | 一种 基于 评分 用户 行为 商品 推荐 方法 | ||
【主权项】:
一种基于评分和用户行为的商品推荐方法,其特征在于:分别针对评分利用隐因子模型预测未知评分,针对用户行为特征利用逻辑回归模型估计用户购买某一商品的可能性,具体包含以下步骤:步骤1:构建用户‑商品评分矩阵,建立隐因子模型即LFM,利用LFM对商品进行自动聚类,找出隐含的类别或特征因子,利用随机梯度下降法优化求解,将用户兴趣pu分解成对多个隐含类别的喜爱程度,商品qi用包含这些隐含特征的权重表示,用户对商品的喜爱程度建模为两者的内积,即R=pu*qi,将目标用户预测评分较高的商品集作为推荐候选集S;步骤2:首先对用户行为数据进行预处理,提取用户的行为特征featureu={x1,x2,x3,...,yu},作为逻辑回归模型的输入参数,然后利用随机梯度下降法优化求解,求出影响用户兴趣特征的回归系数,来估计目标用户对商品购买的可能性,将目标用户购买可能性较大的商品集作为推荐候选集G;步骤3:首先对所述候选集S中评分数值进行归一化处理,然后与所述候选集G进行加权组合排序,最后将排序前10名的商品推荐给用户。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江苏大学,未经江苏大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201610304794.X/,转载请声明来源钻瓜专利网。