[发明专利]面向复杂数据的混合范数多不定核分类方法在审

专利信息
申请号: 201610356544.0 申请日: 2016-05-26
公开(公告)号: CN106022382A 公开(公告)日: 2016-10-12
发明(设计)人: 薛晖 申请(专利权)人: 东南大学
主分类号: G06K9/62 分类号: G06K9/62
代理公司: 南京瑞弘专利商标事务所(普通合伙) 32249 代理人: 陈国强
地址: 211189 江*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种面向复杂数据的混合范数多不定核分类方法,包括以下步骤:(1)获取用于训练分类器的复杂数据;(2)预处理:通过多个核函数将复杂数据转换成训练分类器所需要的核矩阵;(3)模型设计:通过约束多类核间隔和采用多类Hinge‑loss损失函数来设计分类器模型;(4)模型构建:在多类核间隔和多类Hinge‑loss损失函数的基础上,利用不定核技术构造一个更有效的核组合;通过引入类间差异性来提高模型的灵活性;利用混合范数lg,2‑范数(0<g≤1)的稀疏性来降低模型的复杂度;(5)将新的复杂数据输入训练得到的分类器中,得到最终的分类结果。本发明提升了分类器在面对复杂数据时的分类能力和效率。
搜索关键词: 面向 复杂 数据 混合 范数 不定 分类 方法
【主权项】:
一种面向复杂数据的混合范数多不定核分类方法,其特征在于:包括以下步骤:(1)获取用于训练分类器的复杂数据;(2)预处理:通过多个核函数将复杂数据转化成训练分类器所需的核矩阵;(3)模型设计:通过约束多类核间隔和采用多类Hinge‑loss损失函数来设计分类器模型;(4)模型构建:在多类核间隔和多类Hinge‑loss损失函数的基础上,利用不定核技术构造一个更有效的核组合,提升分类器在面对复杂数据时的泛化能力以获得更优的经验分类结果;通过引入类间差异性来提高模型的灵活性;利用混合范数lg,2‑范数(0<g≤1)的稀疏性来降低模型的复杂度;(5)将新的复杂数据输入训练得到的分类器中,得到最终的分类结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东南大学,未经东南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201610356544.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top