[发明专利]基于牛顿迭代的数控轨迹控制方法有效

专利信息
申请号: 201610442386.0 申请日: 2016-06-17
公开(公告)号: CN106020122B 公开(公告)日: 2018-10-30
发明(设计)人: 杨亮亮;沈波;胡鑫杰;胡建;吴达伟 申请(专利权)人: 浙江理工大学
主分类号: G05B19/4103 分类号: G05B19/4103
代理公司: 浙江翔隆专利事务所(普通合伙) 33206 代理人: 戴晓翔
地址: 310018 浙江省*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了基于牛顿迭代的数控轨迹控制方法,属于数控系统领域,现有技术的控制方法,两次利用牛顿迭代法求解高阶方程组,并进行二次迭代修正,最终得到符合加工要求的时间规划值。但是直接利用牛顿迭代法求解方程组得到收敛值误差大,需要消耗较长的时间进行修正。根据效率最优原则以及位移、速度、加速度约束条件,对运动的7个不同时间段进行规划。对关于加速度变化时间的一元高次方程进行数学分析,根据它的单调性,构造平方函数,转换为单一凸形函数,进而利用牛顿迭代法求出它的收敛值。本发明解决现有控制方法过程复杂、繁琐问题,提供了一种简洁、高效的轨迹控制方法。
搜索关键词: 基于 牛顿 数控 轨迹 控制 方法
【主权项】:
1.基于牛顿迭代的数控轨迹控制方法,包括待加工轨迹位移,机器硬件限制条件:最大限制速度、最大限制加速度、最大加加速度,根据机器硬件限制,对轨迹进行时间规划:第一阶段,求待加工轨迹匀加加速度阶段加加速度段时间tj1、加减速度段tj2;第二阶段,求待加工轨迹匀加速度阶段匀加速段ta1、匀减速段时间即ta2值;第三阶段,求待加工轨迹匀速段时间tv1值,其特征在于,根据效率最优原则,对匀加加速度阶段的位移和始末速度方程进行数学分析,化简为一元高次方程,并根据其变化的单调性构造其平方函数,使其转换为单一凸形函数,进而利用牛顿迭代法求出它的收敛值;根据规划出的时间值,求出速度曲线以及起始点,进行插补运算计算出中间点的坐标值,根据坐标值变化向相应坐标输出脉冲信号,控制各执行元件的进给速度、进给方向和进给长度量,进而完成工件的加工任务;求待加工轨迹匀加速度阶段匀加速段ta1、匀减速段时间即ta2值,用ta1表示ta2,得到关于ta1的一元二次方程,求解一元二次方程即可得到ta1的值;所述一元高次方程为:其中,s为轨迹规划出的加工位移,vs为起始速度,jmax为最大加加速度值,ve为终止速度;所述单一凸形函数为:所述牛顿迭代法为:n为牛顿迭代次数的计数量,n=1,2,3.....;在选取迭代初值时,令tj1=tj2=tj,可得tj计算公式:将tj作为迭代初值。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江理工大学,未经浙江理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201610442386.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top