[发明专利]一种面向高校图书馆的图书个性化推荐方法和系统有效

专利信息
申请号: 201610481556.6 申请日: 2016-06-27
公开(公告)号: CN106202184B 公开(公告)日: 2019-05-31
发明(设计)人: 周可;李春花;吕丹阳 申请(专利权)人: 华中科技大学
主分类号: G06F16/907 分类号: G06F16/907;G06F16/903
代理公司: 华中科技大学专利中心 42201 代理人: 朱仁玲
地址: 430074 湖北*** 国省代码: 湖北;42
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种面向高校图书馆的图书个性化推荐的方法,解决高校图书馆现有的图书推荐算法中大规模数据存储和查询、可扩展性及推荐效果差的问题,其基本思路如下:首先将图书馆内的读者和图书等作为节点,构建图模型;其次,将读者的操作日志文件转化为读者‑图书类别偏好矩阵,和读者个人信息矩阵一起计算读者间的相似度,并把这些操作和挖掘出的信息作为边构建关联图谱;其次,将关联图谱和谱聚类相结合,提出了一种新的图书个性化推荐模型,计算得到关于读者的类簇分布;最后,当需要进行图书推荐时,在该读者对应的类簇中根据协同过滤算法计算出推荐图书列表。
搜索关键词: 一种 面向 高校 图书馆 图书 个性化 推荐 方法 系统
【主权项】:
1.一种面向高校图书馆的图书个性化推荐方法,其特征在于,包括以下步骤:(1)对高校图书馆的源数据进行数据清洗,以提取出其中的元数据,并将该元数据导入到图数据库中;(2)将图数据库中的元数据转化为读者对图书的喜好分数;步骤(2)具体为,根据元数据构造关联图谱,关联图谱中读者、图书和图书类别视为关联图谱中的一个节点,喜好分数Sbook作为读者和图书之间的边,图书所属关系作为图书和图书类别之间的边,其中喜好分数Sbook是通过对各种图书操作进行加权求和得出;(3)根据步骤(2)获得的读者对图书的喜好分数计算读者对各图书类别的偏好程度P,多个偏好程度组成读者‑图书类别偏好矩阵;(4)根据元数据中的读者信息建立对应的读者个人信息矩阵,其中矩阵中的行表示不同的读者,列表示读者的属性;(5)根据步骤(3)生成的读者‑图书类别偏好矩阵和步骤(4)建立的读者个人信息矩阵计算读者间的相似度,并将计算得到的该读者间的相似度作为读者与读者之间的关联边插入关联图谱,从而在关联图谱中形成了基于读者相似度的无向带权图;(6)使用谱聚类算法对步骤(5)中得到的关联图谱中的读者节点进行聚类,以得到读者与聚类类别之间的关系,其中步骤(5)中形成的无向带权图作为聚类过程的输入;(7)根据步骤(6)得到的读者与聚类类别之间的关系生成推荐图书。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华中科技大学,未经华中科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201610481556.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top