[发明专利]基于内存计算框架和长短周期兴趣迁移及融合模型的音乐推荐方法在审
申请号: | 201610486368.2 | 申请日: | 2016-06-28 |
公开(公告)号: | CN106202205A | 公开(公告)日: | 2016-12-07 |
发明(设计)人: | 冯永;张备 | 申请(专利权)人: | 重庆大学 |
主分类号: | G06F17/30 | 分类号: | G06F17/30 |
代理公司: | 重庆市前沿专利事务所(普通合伙) 50211 | 代理人: | 路宁 |
地址: | 400045 *** | 国省代码: | 重庆;50 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提出了一种基于内存计算框架和长短周期兴趣迁移及融合模型的音乐推荐方法,主要通过结合内存计算框架解决音乐推荐过程中不同时间跨度情况下的兴趣迁移和融合的问题。本发明首先通过改进的隐马尔科夫模型构建长短周期情况下的兴趣迁移模型,再将兴趣迁移模型中产生的长短周期用户兴趣注入长短周期图模型LSTG将兴趣迁移模型中,然后根据用户偏好在图模型中的游走路径获取相关音乐的评分,最后根据上述模型获取的用户对音乐的评分,按照高低顺序生成音乐的推荐结果集合。该方法充分考虑了不同类型周期对于用户兴趣的影响,同时结合新型的兴趣迁移模型和兴趣融合模型,实现了对用户的更加精确的个性化音乐推荐。 | ||
搜索关键词: | 基于 内存 计算 框架 长短 周期 兴趣 迁移 融合 模型 音乐 推荐 方法 | ||
【主权项】:
一种基于内存计算框架和长短周期兴趣迁移及融合模型的音乐推荐方法,其特征在于,包括:S1:搭建Apache Spark框架,实现算法整体的分布式运行;利用Spark MLlib模块实现算法,加快算法运行速度;S2:获取数据中所有用户对不同音乐的收听次数,对获取的数据进行预处理,利用收听记录计算所有用户的音乐评分;S3:将时序数据整理成周期数据集合;S4:构建长短周期兴趣迁移模型;S5:构建长短周期图模型;S6:结合S3生成的长短周期兴趣和S4中的长短周期图模型进行音乐推荐。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆大学,未经重庆大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201610486368.2/,转载请声明来源钻瓜专利网。
- 上一篇:一种网页链接访问方法、装置及移动终端
- 下一篇:一种文档显示方法及浏览器组件