[发明专利]基于特征数据挖掘及神经网络的肿瘤的分类方法有效
申请号: | 201610488243.3 | 申请日: | 2016-06-24 |
公开(公告)号: | CN106204532B | 公开(公告)日: | 2019-01-18 |
发明(设计)人: | 黄庆华;陈永东 | 申请(专利权)人: | 华南理工大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00 |
代理公司: | 广州市华学知识产权代理有限公司 44245 | 代理人: | 罗观祥 |
地址: | 510640 广*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于特征数据挖掘及神经网络的肿瘤分类方法,该方法首先选取肿瘤超声图片的有效病变特征的人工评分数据作为原始特征数据集;之后采用双聚类算法从原始训练数据集中挖掘出有效的局部诊断模式;其次根据这些诊断模式提取出更高层的特征,形成新的特征向量;接着,新的特征向量作为神经网络的输入进行训练得到有效的多类别分类器;最后,采用同样的方式为测试样本提取特征向量,利用训练得到的多类别分类器对其进行分类,得到肿瘤的具体分类结果。本方法克服传统计算机辅助方法局限于低级图像特征的不足,通过从大量人工评分特征数据集中挖掘出更高层的有效特征,并利用流行的神经网络分类方法训练出最终识别多类别肿瘤的分类器。 | ||
搜索关键词: | 基于 特征 数据 挖掘 神经网络 肿瘤 分类 方法 | ||
【主权项】:
1.一种基于特征数据挖掘及神经网络的肿瘤分类方法,其特征在于,该方法包括下列步骤:S1、医生根据已确诊患者肿瘤超声图片超声所见,对临床医疗中有效的K个诊断特征进行人工评分,构成每个肿瘤样本的K维特征向量;S2、将获取到的原始训练数据集中的每个特征归一化到0~1范围;S3、将归一化后的训练数据集作为输入,利用双聚类算法挖掘出列一致模式的双聚类,进而提取出N个有效的诊断模式;S4、利用提取到N个诊断模式,从原始数据集中提取出更高层次的特征,形成新的N维特征向量;其中,所述的提取出更高层次的特征具体过程如下:S41、计算肿瘤病例特征打分与每一个诊断模式之间的相似度;S42、将上述得到的每一个相似度看做一个新的特征,若有N个诊断模式,则形成维度为N的一个新的特征向量;S5、将步骤S4得到的N维特征向量作为输入,利用神经网络模式进行训练,得到肿瘤多类别分类器;S6、对于测试病例,根据超声图片所见获取特征人工评分,归一化后,利用步骤S3得到的诊断模式,提取出高层次特征向量,将其输入到训练好的分类器中,从而得到最终的肿瘤类别信息。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201610488243.3/,转载请声明来源钻瓜专利网。
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置