[发明专利]网络异常行为的检测方法及系统有效

专利信息
申请号: 201610500130.0 申请日: 2016-06-29
公开(公告)号: CN105915555B 公开(公告)日: 2020-02-18
发明(设计)人: 李嘉伟;王占一 申请(专利权)人: 北京奇虎科技有限公司;北京奇安信科技有限公司
主分类号: H04L29/06 分类号: H04L29/06;H04L12/24
代理公司: 北京市浩天知识产权代理事务所(普通合伙) 11276 代理人: 宋菲;刘云贵
地址: 100088 北京市西城区新*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种网络异常行为的检测方法及系统。其中方法包括:从网络访问日志中获取网络访问数据集;从网络访问数据集中提取每个特定域名下的网络访问数据,计算网络访问数据中指定字段的统计特性参数;从不同维度检测网络访问数据集中各条网络访问数据的行为特性,生成各条网络访问数据对应的多维特征向量;基于训练数据集中各条训练数据的多维特征向量和各条训练数据的实际类标、以及检测数据集中各条检测数据的多维特征向量,采用机器学习中的分类算法,得到检测数据集中各条检测数据的预测类标。根据本发明提供的方案,得到的检测结果同时具有较高的准确率和召回率。
搜索关键词: 网络 异常 行为 检测 方法 系统
【主权项】:
一种网络异常行为的检测方法,其包括:从网络访问日志中获取网络访问数据集,所述网络访问数据集包含训练数据集和检测数据集;从所述网络访问数据集中提取每个特定域名下的网络访问数据,计算所述网络访问数据中指定字段的统计特性参数,构建每个特定域名的统计特性模型;依据计算得到的统计特征参数,从不同维度检测所述网络访问数据集中各条网络访问数据的行为特性,生成各条网络访问数据对应的多维特征向量;基于训练数据集中各条训练数据的多维特征向量和各条训练数据的实际类标、以及检测数据集中各条检测数据的多维特征向量,采用机器学习中的分类算法,得到所述检测数据集中各条检测数据的预测类标;其中类标表示网络访问数据为正常数据或异常数据。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京奇虎科技有限公司;北京奇安信科技有限公司,未经北京奇虎科技有限公司;北京奇安信科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201610500130.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top