[发明专利]一种提高情绪识别模型时间鲁棒性的情绪脑电识别方法在审

专利信息
申请号: 201610574108.0 申请日: 2016-07-18
公开(公告)号: CN106108894A 公开(公告)日: 2016-11-16
发明(设计)人: 刘爽;明东;仝晶晶;安兴伟;许敏鹏;綦宏志;何峰;周鹏 申请(专利权)人: 天津大学
主分类号: A61B5/0476 分类号: A61B5/0476;A61B5/16
代理公司: 天津市北洋有限责任专利代理事务所 12201 代理人: 李林娟
地址: 300072*** 国省代码: 天津;12
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种提高情绪识别模型时间鲁棒性的情绪脑电识别方法,包括:对采集到的64导脑电信号进行包括变参考到双耳平均;降采样到500Hz;1‑100Hz带通滤波;以及利用独立成分分析的算法去除眼电干扰的预处理;将预处理后的脑电信号通过可分频段自适应跟踪找到最佳可分性频段,分别计算每一导联的最佳可分频段的功率谱密度,构成情绪特征矩阵;利用主成分分析法对特征矩阵进行降维;使用支持向量机分类器对降维后的脑电功率谱特征进行识别,建立情绪识别模型。本发明通过可分频段自适应跟踪找到最佳可分性频段,通过增加情绪识别模型的训练集中样本的天数强化了情绪相关特征,弱化了时间特异性特征,提高了情绪识别模型的时间鲁棒性。
搜索关键词: 一种 提高 情绪 识别 模型 时间 鲁棒性 方法
【主权项】:
一种提高情绪识别模型时间鲁棒性的情绪脑电识别方法,其特征在于,所述情绪脑电识别方法包括以下步骤:对采集到的64导脑电信号进行预处理,包括:变参考到双耳平均;降采样到500Hz;1‑100Hz带通滤波;以及利用独立成分分析的算法去除眼电干扰;将预处理后的脑电信号采用可分频段自适应跟踪的算法找到每个用户的最佳可分性频段,分别计算每一导联的最佳可分频段的功率谱密度,构成情绪特征矩阵;利用主成分分析法对得到的情绪特征矩阵进行降维处理,作为最终的特征矩阵;使用支持向量机分类器对最终的特征矩阵中的特征进行识别,通过增加情绪模型训练集中样本的天数弱化时间特征,提高情绪模型的时间鲁棒性,将不同情绪状态区分开,建立情绪识别模型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于天津大学,未经天津大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201610574108.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top