[发明专利]适应性人工蜂群优化的矿岩强度软测量方法有效
申请号: | 201610585884.0 | 申请日: | 2016-07-24 |
公开(公告)号: | CN106228241B | 公开(公告)日: | 2018-10-16 |
发明(设计)人: | 郭肇禄;杨火根;周才英;刘小生;尹宝勇;刘松华;邹玮刚 | 申请(专利权)人: | 江西理工大学 |
主分类号: | G06N3/08 | 分类号: | G06N3/08;G06N3/04;G06Q50/02 |
代理公司: | 赣州凌云专利事务所 36116 | 代理人: | 曾上 |
地址: | 341000 *** | 国省代码: | 江西;36 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种适应性人工蜂群优化的矿岩强度软测量方法。本发明采用三层感知器神经网络作为矿岩强度的软测量模型,利用适应性人工蜂群算法来优化设计神经网络的连接权值和偏置值。在适应性人工蜂群算法中,搜索缩放因子根据适应值的反馈信息适应性地产生,并且设计了基于邻域最优个体和全局最优个体的高斯变异策略来适应性地产生新个体。本发明能够提高矿岩强度的软测量精度,提高矿岩强度的测量效率。 | ||
搜索关键词: | 适应性 人工 蜂群 优化 强度 测量方法 | ||
【主权项】:
1.一种适应性人工蜂群优化的矿岩强度软测量方法,其特征在于,包括以下步骤:步骤1,在需要软测量的区域内采集RN个矿岩试件,并对矿岩试件进行实验测量出每个矿岩试件的吸水率、干密度、波阻抗、动泊松比、动弹性模量以及抗压强度,将矿岩试件的实验数据作为样本数据集;然后对采集到的样本数据集进行归一化处理;步骤2,用户初始化参数,所述初始化参数包括三层感知器神经网络隐含层神经元的个数HN,种群大小Popsize,最大未改善次数Limit,邻域半径NK,最大评价次数MAX_FEs;步骤3,当前演化代数t=0,当前评价次数FEs=0;步骤4,令三层感知器神经网络的输入变量为矿岩试件的归一化的吸水率、干密度、波阻抗、动泊松比、动弹性模量,且输出为矿岩试件的归一化的抗压强度,然后确定三层感知器神经网络的隐含层和输出层的传递函数,并计算三层感知器神经网络的优化设计参数个数D=HN×7+1;步骤5,随机初始化种群
其中:个体下标i=1,2,...,Popsize;
为种群Pt中的第i个个体并且存储了三层感知器神经网络的D个待优化设计参数,其随机产生公式为:
其中维数下标j=1,2,..,D;rand(0,1)表示在[0,1]之间产生随机实数的函数;步骤6,计算种群Pt中每个个体
的适应值
其中个体下标i=1,2,...,Popsize,个体
的适应值
的计算方法为:将个体
解码为三层感知器神经网络的连接权值和偏置值,并计算三层感知器神经网络在样本数据集上的均方误差NEi,然后令个体
的适应值
步骤7,令种群Pt中所有个体的未改善次数
其中个体下标i=1,2,...,Popsize;步骤8,保存种群Pt中的最优个体Bestt,然后令当前评价次数FEs=FEs+Popsize,并令均值因子MNU=0.5;步骤9,雇佣蜂执行适应性搜索操作,具体步骤如下:步骤9.1,令计数器i=1,并令缩放因子列表SCFList为空;步骤9.2,令新个体
步骤9.3,以MNU为均值,0.1为标准差产生的一个高斯随机实数GRV,然后令缩放因子SCF=GRV×2‑1;步骤9.4,在[1,D]之间随机产生一个正整数RD1;步骤9.5,在[1,Popsize]之间随机产生两个不相等的正整数RI1和RI2;步骤9.6,令
步骤9.7,计算新个体Ut的适应值Fit(Ut);步骤9.8,如果新个体Ut比个体
更优,则将GRV添加到缩放因子列表SCFList中;步骤9.9,在个体
与新个体Ut之间执行选择操作并更新个体
的未改善次数
步骤9.10,令计数器i=i+1;步骤9.11,如果计数器i小于或等于Popsize,则转到步骤9.2,否则转到步骤9.12;步骤9.12,计算缩放因子列表SCFList中数据的平均值MeanSCF;步骤9.13,在[0.8,1.0]之间随机产生一个实数RW;步骤9.14,令MNU=RW×MNU+(1‑RW)×MeanSCF;步骤9.15,转到步骤10;步骤10,根据种群Pt中个体的适应值计算所有个体的选择概率;步骤11,观察蜂根据种群Pt中每个个体的选择概率选择出个体执行适应性高斯变异操作生成新个体,然后执行选择操作并计算个体的未改善次数,具体步骤如下:步骤11.1,令计数器i=1;步骤11.2,根据种群Pt中每个个体的选择概率采用轮盘赌策略选择出个体
并令新个体
步骤11.3,令邻域下标RSI=(SEI‑NK+Popsize)%Popsize,其中SEI表示轮盘赌策略选择出个体的下标,%表示取余运算符;步骤11.4,令邻域最优个体
并令计数器rt=1;步骤11.5,令邻域下标RSI=(RSI+1)%Popsize;步骤11.6,如果个体
比个体RSBestt更优,则令
否则保持RSBestt不变;步骤11.7,令计数器rt=rt+1;步骤11.8,如果rt小于或等于NK×2,则转到步骤11.5,否则转到步骤11.9;步骤11.9,在[1,D]之间随机产生一个正整数RD2;步骤11.10,在[1,NK×2]之间随机产生一个正整数RSN,然后令随机邻域下标RNI=(SEI‑NK+RSN+Popsize)%Popsize;步骤11.11,令均值
步骤11.12,令标准差
其中abs表示取绝对值的函数;步骤11.13,以GRMean为均值,GRSD为标准差产生一个高斯随机实数RVal,如果RVal的值超出了[LBRD2,UBRD2]之间的范围,则采用同样的方法重新产生高斯随机实数RVal,直到RVal的值不超出[LBRD2,UBRD2]之间的范围;步骤11.14,在[1,Popsize]之间随机产生一个正整数RI3;步骤11.15,令均值
步骤11.16,令标准差
其中abs表示取绝对值的函数;步骤11.17,以GBMean为均值,GBSD为标准差产生一个高斯随机实数BVal,如果BVal的值超出了[LBRD2,UBRD2]之间的范围,则采用同样的方法重新产生高斯随机实数BVal,直到BVal的值不超出[LBRD2,UBRD2]之间的范围;步骤11.18,在[0,1]之间随机产生一个实数RNW;步骤11.19,令
步骤11.20,计算新个体Ut的适应值Fit(Ut),然后在个体
与新个体Ut之间执行选择操作,并计算个体
的未改善次数
步骤11.21,令计数器i=i+1;步骤11.22,如果计数器i小于或等于Popsize,则转到步骤11.2,否则转到步骤12;步骤12,令当前评价次数FEs=FEs+Popsize×2;步骤13,侦察蜂找出种群Pt中未改善次数最大的个体,并标记该个体为
如果个体
的未改善次数小于Limit,则转到步骤14,否则对个体
进行随机初始化,并令个体
的未改善次数为0;步骤14,保存种群Pt中最优个体Bestt;步骤15,令当前演化代数t=t+1;步骤16,重复步骤9至步骤15直至当前评价次数FEs达到MAX_FEs后结束,将执行过程中得到的最优个体Bestt解码为三层感知器神经网络的连接权值和偏置值,并将得到的三层感知器神经网络作为软测量模型,即可实现矿岩强度的软测量。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于江西理工大学,未经江西理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201610585884.0/,转载请声明来源钻瓜专利网。