[发明专利]一种基于收费数据的高速公路旅行时间的预测方法在审

专利信息
申请号: 201610596099.5 申请日: 2016-07-26
公开(公告)号: CN106228268A 公开(公告)日: 2016-12-14
发明(设计)人: 于海洋;吴志海;马晓磊;张俊峰;杨帅 申请(专利权)人: 北京航空航天大学
主分类号: G06Q10/04 分类号: G06Q10/04
代理公司: 北京和信华成知识产权代理事务所(普通合伙)11390 代理人: 胡剑辉
地址: 100191*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种基于收费数据的高速公路旅行时间的预测方法,所述方法包括以下步骤:步骤一,获取预定高速公路的收费数据;步骤二,预处理所述高速公路的收费数据;步骤三、对于预处理后的数据集采样和处理得到样本集;步骤四、利用所述样本集建立自编码器和BP神经网络组合的预测模型;步骤五,利用所述模型进行高速公路旅行时间预测。采用上述技术方案该由于自编码器具有自适应学习的特性,对网络初始化不敏感,因而大大提高模型的稳定性。
搜索关键词: 一种 基于 收费 数据 高速公路 旅行 时间 预测 方法
【主权项】:
一种基于收费数据的高速公路旅行时间的预测方法,其特征在于,所述方法包括以下步骤:步骤一,获取预定高速公路的收费数据;步骤二,预处理所述高速公路的收费数据所述预处理包括:对所述收费数据进行提取,获得一个含有入口收费站编号、入口时间、出口收费站编号,出口时间,以及日期的数据集;以及对数据进行筛选剔除错误数据;步骤三、对于预处理后的数据集采样和处理得到样本集所述采样包括:根据数据中的时间进行采样,每隔预定的时间间隔A抽取预处理后的数据集中的B个样本,并对样本中车辆的数据进行跟踪,在其它卡口获取该B个样本中的车辆所对应的收费数据;所述处理包括:需要对于数据的内容进行处理,所述对数据的内容进行处理包括对数据内容进行替换,对采集到的预定的时间间隔A内的B个样本的旅行时间进行平均,使用平均旅行时间来代替各个样本中的实际旅行时间;步骤四、利用所述样本集建立预测模型所述建立预测模型包括建立自编码器模型以及建立BP神经网络模型;其中,建立自编码器模型包括:首先,将输入变量输入到隐藏层进行计算,所述输入变量表示为其中i表示第i个样本,每个xi是一个三维向量,分别是tn‑3、tn‑2、tn‑1时刻的平均旅行时间,N表示样本的总数;上述输入数据在隐藏层中使用公式:进行计算,其中,所述y为对于通过所述隐藏层计算后得到的结果,所述θ1={w1,b1},w1是连接输入层和隐藏层的权重矩阵;b1是连接输入层和隐藏层的偏置向量;然后,将所述y输入到自编码器的输出层进行计算得到重构后的数据,实现对于输入数据的重构。所述输出层中使用的计算公式为:其中,z即为对y反向解码之后的结果,g为是解码函数,所述θ2={w2,b2},w2是连接隐藏层和输出层的权重矩阵;b2是连接隐藏层和输出层的偏置向量;第三,通过建立损失函数,利用训练集数据通过反向传播算法不断更新迭代{θ1,θ2},直到损失函数收敛为止,确定参数{θ1,θ2};其中,建立BP神经网络模型包括:首先,将重构后得到的数据集输入到所述BP神经网络隐藏层进行计算,所述计算公式为h=s(w3z+b3),其中,h为计算结果,θ3={w3,b3}w3是连接输入层和隐藏层的权重矩阵,b3是连接输入层和隐藏层的偏置向量,s是激活函数;然后,将所述结果h通过公式o=r(w4h+b4)进行计算,得到训练用的预测结果o,其中,w4是连接隐藏层和输出层的权重矩阵,b4是连接隐藏层和输出层的偏置向量;第三,通过建立损失函数,利用训练集数据通过反向传播算法不断更新迭代{θ3,θ4},直到损失函数收敛为止,确定参数{θ3,θ4};步骤五,高速公路旅行时间预测将测试数据的输入变量x*先后输入到所述自编码器和所述BP神经网络模型中,通过所述计算模型预测旅行时间。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京航空航天大学,未经北京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201610596099.5/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top