[发明专利]同步自适应时空特征表达学习模型的构建方法及相关方法有效

专利信息
申请号: 201610602678.6 申请日: 2016-07-27
公开(公告)号: CN107704924B 公开(公告)日: 2020-05-19
发明(设计)人: 王亮;杜勇 申请(专利权)人: 中国科学院自动化研究所
主分类号: G06N3/08 分类号: G06N3/08
代理公司: 北京市恒有知识产权代理事务所(普通合伙) 11576 代理人: 郭文浩
地址: 100080 *** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了针对序列的同步自适应时空特征表达学习模型的构建方法及其相关的模型分析方法和行为识别方法。其中,该构建法包括首先将长短时记忆神经元输入及三个控制门的全连接替换为四组独立的滤波器,依次构建卷积递归神经元;然后,将X个CRN并行排列,构建卷积递归神经网络层;接着根据以下方式构建隐含层:各CRN的输出只存在向其自身基本单元的反馈连接,且各CRN之间不存在连接关系;再在卷积递归神经网络层和输入序列之间构建卷积层;最后,将Y个卷积递归神经网络层相堆叠,形成卷积递归神经网络,单个卷积递归神经网络层包含Z个子层。通过本发明实施例可以获取更具区分性的序列时空信息表达,而且无需复杂的预处理。
搜索关键词: 同步 自适应 时空 特征 表达 学习 模型 构建 方法 相关
【主权项】:
一种针对序列的同步自适应时空特征表达学习模型的构建方法,所述方法至少包括:将长短时记忆神经元输入及三个控制门的全连接替换为四组独立的滤波器,依次构建卷积递归神经元CRN;将所述X个CRN并行排列,构建卷积递归神经网络层;其特点在于:建立所述各CRN的输出只向其自身基本单元的反馈连接,且在所述各CRN之间不建立连接关系;在所述卷积递归神经网络层和输入序列之间构建卷积层;将Y个所述卷积递归神经网络层相堆叠,形成卷积递归神经网络,其中单个所述卷积递归神经网络层包含Z个子层,所述X、所述Y及所述Z均为正整数。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院自动化研究所,未经中国科学院自动化研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201610602678.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top