[发明专利]一种CNN-SVM模型的构建及倾向性分类方法有效

专利信息
申请号: 201610633439.7 申请日: 2016-08-04
公开(公告)号: CN107688576B 公开(公告)日: 2020-06-16
发明(设计)人: 张艳;涂曼姝;颜永红 申请(专利权)人: 中国科学院声学研究所;北京中科信利技术有限公司
主分类号: G06F16/35 分类号: G06F16/35;G06K9/62;G06N3/04;G06N3/08
代理公司: 北京方安思达知识产权代理有限公司 11472 代理人: 王宇杨;陈琳琳
地址: 100190 *** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种CNN‑SVM模型的构建方法,所述方法包括:从社交媒体上抓取基于某一事件的所有评论和转发信息,构建训练样本集;建立包含卷积层、采样层和分类层的CNN模型,利用训练样本集训练CNN模型的各层参数;将训练好参数的CNN模型中的卷积层、采样层与SVM分类器联合在一起,构成CNN‑SVM模型;将训练样本集输入CNN‑SVM模型,训练SVM分类器的参数;所述CNN‑SVM模型构建完成。基于CNN‑SVM模型,本发明还提供了一种倾向性分类方法,并构建转发树,能够对含有转发文本的待分类评论进行准确分类。本发明的倾向性分类方法可以提高分类的正确率。
搜索关键词: 一种 cnn svm 模型 构建 倾向性 分类 方法
【主权项】:
一种CNN‑SVM模型的构建方法,所述方法包括:从社交媒体上抓取基于某一事件的所有评论和转发信息,构建训练样本集;建立包含卷积层、采样层和分类层的CNN模型,利用训练样本集训练CNN模型的各层参数;将训练好参数的CNN模型中的卷积层、采样层与SVM分类器联合在一起,构成CNN‑SVM模型;将训练样本集输入CNN‑SVM模型,训练SVM分类器的参数;所述CNN‑SVM模型构建完成。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院声学研究所;北京中科信利技术有限公司,未经中国科学院声学研究所;北京中科信利技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201610633439.7/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top