[发明专利]一种基于Fisher分类器组的连续型数据预处理方法有效
申请号: | 201610686502.3 | 申请日: | 2016-08-19 |
公开(公告)号: | CN106295708B | 公开(公告)日: | 2019-07-19 |
发明(设计)人: | 刘涛;李东琦;崔兴瑞;陈艳兵;武萌雅 | 申请(专利权)人: | 重庆大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 北京国坤专利代理事务所(普通合伙) 11491 | 代理人: | 姜彦 |
地址: | 400044 *** | 国省代码: | 重庆;50 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于Fisher分类器组的连续型数据预处理方法,使用Fisher判别准则生成多个Fisher分类器,组成Fisher分类器组;将各样本原始数据输入Fisher分类器组获得输出,最后将这些输出结果通过非线性连续函数进行映射,并将映射结果作为数据预处理结果。用Fisher分类器组的输出获得一定的样本分类冗余信息,随后在“非线性连续函数”映射过程中减小奇异值和野值对后续分类器的影响,最终可在不改变分类器性能的情况下,提高分类器的准确度;本发明提出的方法正确识别率为96.83%。 | ||
搜索关键词: | 一种 基于 fisher 分类 连续 数据 预处理 方法 | ||
【主权项】:
1.一种基于Fisher分类器组的连续型数据预处理方法,其特征在于,该基于Fisher分类器组的连续型数据预处理方法为:使用人工嗅觉系统对七种物质,包括:啤酒、白酒、葡萄酒、绿茶、红茶、乌龙茶和普洱茶,进行分类识别;人工嗅觉系统由32个气敏传感器组成,系统对传感器阵列响应的采样速率为1Hz,采样精度为16bit;每种测试物质进行12次采集,共计84次采集;每次采集过程中清洁空气即基线采集时间3分钟,被测物进样时间3分钟,清洗时间4分钟;每次采集完成后,将第i个传感器的响应记为Δri:Δri=rigas‑ribase;其中rigas为被测物进样阶段第i个传感器响应的平均值,ribase为基线采集阶段第i个传感器响应的平均值,则每次采集可获得一个32维的样本,样本共计84个;对于每种物质的样本,取3个作为训练样本,剩余为测试样本;松弛变量取a=5.76;人工嗅觉系统对啤酒、白酒、葡萄酒、绿茶、红茶、乌龙茶和普洱茶进行分类识别中,使用Fisher判别准则生成n个Fisher分类器,组成Fisher分类器组:依据训练样本类别,由两类样本组成n个训练子集,利用训练子集Xn生成n个Fisher判别模型,生成n个Fisher分类器,形成Fisher分类器组;将各样本原始数据输入Fisher分类器组获得输出,最后将输出结果通过非线性连续函数进行映射,并将映射结果作为数据预处理结果;该基于Fisher分类器组的连续型数据预处理方法包括以下步骤:步骤一、训练子集选择与生成:通过获得若干组观察数据与所属类别的信息作为算法模型建立的依据,每一条信息称为一个训练样本,若干训练样本组成训练集;若训练样本有k类,k≥2;则依据训练样本类别,由两类样本组成个训练子集,训练子集Xn表示为:Xn={{xi},{xj}};其中,i,j∈{1,2,Λ,n}且i≠j,{xi}和{xj}分别表示训练集中第i和第j类样本的集合;步骤二、Fisher分类器组生成:利用训练子集Xn生成Fisher判别模型yn=fn(x),步骤如下:1)求Xn中i,j两类样本的均值和2)求类内散度矩阵Swn:其中是的转置矩阵;3)求类间散度矩阵Sbn:4)求投影方向Wn:Wn=Swn‑1·Sbn;5)求Fisher判别阈值w0n:则得训练子集Xn对应的判别模型:yn=fn(x)=Wn·x‑w0n;6)按照步骤1)至步骤5)的方法求出每个训练子集对应的Fisher判别模型,生成个Fisher分类器,形成Fisher分类器组,则分类器组输出表示为:步骤三、非线性连续型函数映射方法包括:利用非线性连续函数对Fisher分类器组输出进行映射,令为第n个Fisher分类器输出的非线性映射且:其中a是为增强算法泛化性能而引入的松弛变量,a>0;若Fisher分类器组由k个分类器组成,则为数据预处理结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆大学,未经重庆大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201610686502.3/,转载请声明来源钻瓜专利网。
- 上一篇:紫砂壶(高山流水系列‑1)
- 下一篇:紫砂壶(高山流水系列‑2)