[发明专利]一种基于拉格朗日插值与时间序列的预测方法在审

专利信息
申请号: 201610708527.9 申请日: 2016-08-24
公开(公告)号: CN106354995A 公开(公告)日: 2017-01-25
发明(设计)人: 程晓荣;李天琦;张鹏;陆明璇 申请(专利权)人: 华北电力大学(保定)
主分类号: G06F19/00 分类号: G06F19/00;G06F17/30
代理公司: 暂无信息 代理人: 暂无信息
地址: 071003 河*** 国省代码: 河北;13
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明属于数据挖掘技术领域,具体涉及一种基于拉格朗日插值与时间序列分析的数据预测方法。该发明在数据预处理、数据预测和数据挖掘技术基础上,利用拉格朗日插值法对缺失值与异常值进行预处理,将缺失值和异常值填补完整,保留了历史数据,为后续的数据挖掘提供了数据基础。在预处理数据的基础上,应用时间序列分析法预测未来值。本发明与现有模型相比,解决了因直接将时间序列预测方法应用到不完整的原始数据上而导致预测结果偏离、准确性降低等问题,提高了数据预测准确性,较好地满足了企事业的预测需求。
搜索关键词: 一种 基于 拉格朗日插值 时间 序列 预测 方法
【主权项】:
一种基于拉格朗日插值与时间序列的预测方法,其特征在于:包括以下步骤:步骤1:对于原始数据进行分析,对于数据缺失值利用逐行扫描方式查看是否有缺失值,而对于异常值检测采取与设定正常取值范围逐一比对,范围之外的值标记为异常值,对于检测出的缺失值与异常值进行标记。步骤2:对步骤1中检测出有问题的数据利用拉格朗日插值法进行预处理,得到清理、整理后的数据。步骤3:对于步骤2中清理后的数据进行纯随机性检验(白噪声检验),若为纯随机序列则结束,若不为纯随机序列则进入步骤4。步骤4:对于步骤3中清理后的数据进行序列平稳性检验,若不是平稳序列则进入步骤5进行差分直至平稳为止,若是则进入步骤6。步骤5:对于步骤4中序列为非平稳序列,进行非平稳时间序列分析。步骤6:对步骤4中的数据进行平稳时间序列分析。步骤7:对于符合步骤3和步骤4的数据序列进行ARIMA模型的拟合。步骤8:将应用时拉结合法处理后的数据存入数据库中,得出预测值。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华北电力大学(保定),未经华北电力大学(保定)许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201610708527.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top