[发明专利]一种基于SVR算法的苹果叶片叶绿素含量高光谱反演方法在审

专利信息
申请号: 201610804917.6 申请日: 2016-09-06
公开(公告)号: CN106442338A 公开(公告)日: 2017-02-22
发明(设计)人: 常庆瑞;刘京;李粉玲 申请(专利权)人: 西北农林科技大学
主分类号: G01N21/25 分类号: G01N21/25
代理公司: 北京方圆嘉禾知识产权代理有限公司11385 代理人: 董芙蓉
地址: 712100 陕*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于SVR算法的苹果叶片叶绿素含量高光谱反演方法,为实现苹果叶片叶绿素含量的高光谱反演,分析了多种光谱参数与实测SPAD值的相关性,并将归一化光谱参数值及SPAD值进行多项式回归及支持向量回归。其中以归一化植被指数为变量的SVR反演模型在建模及模型检验中决定系数分别为0.7410、0.8914,均方根误差分别为0.1332、0.1256,具有较高的精度及良好的预测能力。与多项式回归相比,SVR具有更好的反演效果,可以作为叶绿素高光谱反演的优选算法。
搜索关键词: 一种 基于 svr 算法 苹果 叶片 叶绿素 含量 光谱 反演 方法
【主权项】:
一种基于SVR算法的苹果叶片叶绿素含量高光谱反演方法,其特征在于,包括以下步骤:步骤1、叶片光谱测定:苹果叶片光谱测定于室内进行,,采用SVC HR‑1024i型全波段地物光谱仪,波长范围为350‑2500nm,光谱采样间隔在350~1000nm范围内是1.377nm,在1000~2500nm范围内为2nm,光谱测定中使用仪器内置光源,为消除环境变化对仪器的影响,每隔0.5h用参考板进行一次优化,选择正常苹果叶片94片,每片叶子使用叶片夹从叶柄至叶尖分段测量3次,避开叶脉部分,求平均值后得出该叶片的光谱反射率曲线;步骤2、叶绿素测定:用SPAD‑502型便携式叶绿素仪测定值代替叶绿素含量,每片叶片测量时避开叶脉部分,从叶柄至叶尖分段测量4次,平均后得出该叶片的SPAD值;步骤3、数据处理:对测得的原始光谱数据进行重采样,采样间隔1nm,构建光谱特征参数,将采集的94个样本随机分为2组:一组60个,一组34个,分别用于光谱参数与实测SPAD值的相关关系模型的建立与检验,数据处理及建模在Excel及Matlab中完成;步骤4:光谱参数与SPAD值支持向量回归分析选取了数据归一化的方法以消除量级的差别,对归一化后的光谱参数数据及SPAD值进行支持向量回归,SVM类型设置为e‑SVR,其损失函数p设为0.01,核函数类型选取径向基函数,最优惩罚系数C及RBF核参数g使用网格搜索法进行参数寻优,其他参数采用默认值;各光谱参数与SPAD值SVR模型中,R565、NDVI光谱参数SVR模型在建立及检验中的决定系数分别在0.69及0.85以上,均方根误差在0.15及0.14以下。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西北农林科技大学,未经西北农林科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201610804917.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top