[发明专利]一种基于神经网络算法的阵列天线方向图综合方法有效
申请号: | 201610817682.4 | 申请日: | 2016-09-12 |
公开(公告)号: | CN106355245B | 公开(公告)日: | 2018-09-21 |
发明(设计)人: | 宗华;张赫;刘北佳 | 申请(专利权)人: | 哈尔滨工业大学 |
主分类号: | G06N3/04 | 分类号: | G06N3/04;G06N3/08;G06K9/62 |
代理公司: | 哈尔滨市阳光惠远知识产权代理有限公司 23211 | 代理人: | 梁超 |
地址: | 150006 黑龙*** | 国省代码: | 黑龙江;23 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种基于神经网络算法的阵列天线方向图综合方法,以解决传统阵列天线方向图综合技术计算量大,计算时间长,最优权值的寻找非常困难的问题。所述的方法包括天线阵模型建立步骤、最优权值获取步骤以及天线阵列方向图生成步骤。本发明在阵列天线方向图综合技术中使用神经网络算法,经过训练的RBF神经网络可有效地用于阵列天线方向图综合,即利用神经网络算法实现阵列天线方向图综合,合成速度特别快,零陷电平低,主瓣突出,且方向图形状稳定。 | ||
搜索关键词: | 一种 基于 神经网络 算法 阵列 天线方向图 综合 方法 | ||
【主权项】:
1.一种基于神经网络算法的阵列天线方向图综合方法,其特征在于,天线阵模型建立步骤:N个COCO天线组成阵列,所述阵列包含N2个单极子天线,天线阵列采用均匀直线阵形式,天线阵元间距d≤λ,单元节边长为1/2介质波长:根据天线的工作中心频率f=1.8GHz,基片材料的介电常数εr=2.56,为使正反面微带段错落有致,产生适合的传输模式和辐射模式,需a≈b;同时介质板长度L是介质板宽度W的6.5倍,其中b为贴片单元间隔;最优权值获取步骤:包括信息确定步骤、网络参数选择步骤、学习训练算法选择步骤、调整与获取步骤;信息确定步骤:将问题转化为网络所能表达的方式并能处理的形式,确定各节点的输入输出;用K均值聚类法计算各个样本中心,N为样本中心个数,即:先聚类,再按取值的方法求每类的样本中心,以所求的样本中心为隐含层单元;网络参数选择步骤:确定输入、输出神经元的数目、多层网络的层数和隐层神经元的数目,快照次数为K,训练样本数目为A,其中A为复数,分成实部和虚部计算,期望输出为阵元的复数权系数的实部和虚部,训练样本输入是通过随机取与训练样本数相同组的波达角得到的,复数权系数利用共轭梯度算法得到;期望误差的选取通过对两个不同的期望误差值的网络进行训练,从中确定一个网络;学习训练算法选择步骤:先进行初始化,然后利用径向基网络完成函数逼近,确定输入样本和期望输出,其中,天线阵K×N矩阵的快照A设为输入样本,各个阵元的权向量ω设为期望输出;对天线阵阵元数进行设置,确定来波方向,归一化后得到信号输入向量,实现信号输入向量到权向量的映射;调整与获取步骤:对聚类方法、隐节点数、隐节点数据中心学习系数、隐节点扩展常数学习系数及隐节点输出权值学习系数进行调整,完成训练后网络连接权得到确定,可直接利用网络来获取期望信号的最优权值;天线阵列方向图生成步骤:利用获取的最优权值对天线阵模型进行验证,从而生成天线阵列方向图。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工业大学,未经哈尔滨工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201610817682.4/,转载请声明来源钻瓜专利网。
- 上一篇:一种泵车及其伸缩式泵送系统
- 下一篇:压缩机加固组件、空调机组