[发明专利]基于APDE-RBF神经网络的网络安全态势预测方法有效

专利信息
申请号: 201610871705.X 申请日: 2016-09-30
公开(公告)号: CN106411896B 公开(公告)日: 2019-04-23
发明(设计)人: 李方伟;李骐;李俊瑶 申请(专利权)人: 重庆邮电大学
主分类号: H04L29/06 分类号: H04L29/06;H04L12/24;G06N3/04
代理公司: 重庆辉腾律师事务所 50215 代理人: 卢胜斌
地址: 400065 重*** 国省代码: 重庆;50
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明属于网络安全技术领域,特别涉及一种基于吸引子传播差分进化算法的径向基函数APDE‑RBF神经网络的网络安全态势预测方法,包括利用AP聚类算法对样本数据进行划分聚类,从而获得径向基函数RBF的中心和网络的隐含层节点数;利用AP聚类得出种群差异度,自适应地改变DE算法的缩放因子和交叉概率,对RBF的宽度和连接权值进行优化;同时为了避免陷入局部最优以及跳出局部极值点,对每一代种群的精英个体和种群差异度中心进行混沌搜索;确定最终RBF网络模型,输入测试数据集,输出态势预测值;本发明旨在增强泛化能力的同时,提高对网络安全态势的预测精度。
搜索关键词: 基于 apde rbf 神经网络 网络安全 态势 预测 方法
【主权项】:
1.一种基于吸引子传播差分进化算法的径向基函数APDE‑RBF神经网络的网络安全态势预测方法,其特征在于,该方法包括以下步骤:步骤1:利用吸引力传播AP聚类算法对样本数据进行划分聚类,从而获得径向基函数RBF的中心和网络的隐含层节点数;步骤2:利用AP聚类得出种群差异度,自适应地改变差分进化DE算法的缩放因子和交叉概率,对RBF的宽度和连接权值进行优化;步骤3:为了避免陷入局部最优以及跳出局部极值点,对每一代种群的精英个体和种群差异度中心进行混沌搜索;步骤4:确定最终RBF网络模型,输入测试数据集,输出态势预测值;所述步骤2中进一步包括以下步骤:步骤21:执行初始化,过程如下:σi=σmin+rand(0,1)*(σmax‑σmin)wi=rand(0,1)其中σi为RBF神经网络基函数宽度,σmax表示所有样本数据点中两个最远数据点的距离宽度,其计算公式为:σmin表示所有样本数据点中两个最近数据点的距离宽度,其计算公式为:ci、cj表示任意两个不同的隐含层节点,wi表示隐含层到输出层连接权值,rand(0,1)表示(0,1)间均匀分布的随机数;步骤22:执行变异过程,将第g+1代种群中变异个体Vi(g+1)建模为第g代种群中三个个体的函数:Vi(g+1)=Xr1(g)+F*(Xr2(g)‑Xr3(g))i≠r1≠r2≠r3其中Xi(g)是第g代种群中第i个个体,即Xr1(g)、Xr2(g)和Xr3(g)分别表示第g代种群中第r1个、第r2个以及第r3个个体,F为缩放因子;步骤23:执行交叉过程,产生第g+1代第i个第j维新个体uij(g+1)的公式为:其中vij(g+1)表示第g代种群第i个第j维个体进行变异操作后的个体,xij(g)表示第g代种群第i个第j维个体,rand是(0,1)间均匀分布的随机数,jrand是[1,n]间的随机整数,CR表示交叉概率;上述公式含义为:当随机变量rand小于交叉概率CR或者个体中元素对应序数j等于随机变量jrand,则采用变异个体中的元素作为新个体,旨在提高个体变异的可能性;否则,仍保持目标个体xij(g)不变;步骤24:执行选择过程,如下:其中Ui(g+1)是候选个体,Xi(g)是对应个体,f(·)是个体的适应度函数,此处使用均方误差作为适应度函数。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201610871705.X/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top