[发明专利]一种基于SVM的医疗图像血管识别方法在审
申请号: | 201610917304.3 | 申请日: | 2016-10-20 |
公开(公告)号: | CN106530283A | 公开(公告)日: | 2017-03-22 |
发明(设计)人: | 胡启东;李建强;张苓琳;韩赫 | 申请(专利权)人: | 北京工业大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06T7/136 |
代理公司: | 北京思海天达知识产权代理有限公司11203 | 代理人: | 张慧 |
地址: | 100124 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开一种基于SVM的医疗图像血管识别方法,包括首先SVM分类器是通过专家手工分割后的样本训练出来的SVM模型对FCM自动选取的样本训练出的SVM模型进行交叉验证、优化后的结果,使分割结果更加精确;然后采用SVM分割血管,其实就是将像素点分为前景(即血管)和背景(即除血管外其他部分)两类,然后把血管部分提取出来,最后通过形态学处理以及阈值化可以达到增强血管网络、保留血管分叉以及交汇部分,最终转化为二值图像可以更直接地反映血管分布。本发明采用了FCM、SVM和形态学图像处理相结合,可使识别效果更好。 | ||
搜索关键词: | 一种 基于 svm 医疗 图像 血管 识别 方法 | ||
【主权项】:
一种基于SVM的医疗图像血管识别方法,其特征在于,包括以下步骤:S1、获取眼底图像;S2、对所述眼底图像进行血管的绿色通道分量提取,得到待处理眼底图像;S3、通过FCM自动选取训练样本,提取样本颜色和纹理特征,即分别提取血管部分和非血管部分的特征,然后训练SVM模型;S4、通过专家标记后的图像训练出的SVM模型来交叉验证FCM自动选取的样本所训练的SVM模型,优化SVM参数;S5、采用优化好的SVM分类器对待处理眼底图像进行分割,即初步提取眼底图像血管;S6、对所述初步提取眼底图像血管进行形态学操作及阈值化处理,实现最终提取眼底血管。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京工业大学,未经北京工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201610917304.3/,转载请声明来源钻瓜专利网。
- 上一篇:一种用于治疗前列腺肥大的中药组方
- 下一篇:蛭草明目合剂及其制备方法
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序