[发明专利]神经网络模型压缩方法以及装置有效

专利信息
申请号: 201610943049.X 申请日: 2016-10-31
公开(公告)号: CN106485316B 公开(公告)日: 2019-04-02
发明(设计)人: 朱志凡;冯仕堃;周坤胜;石磊;何径舟 申请(专利权)人: 北京百度网讯科技有限公司
主分类号: G06N3/02 分类号: G06N3/02;G06N3/06;H03M1/54;H03M1/38
代理公司: 北京清亦华知识产权代理事务所(普通合伙) 11201 代理人: 宋合成
地址: 100085 北京市*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种神经网络模型压缩方法以及装置。其中方法包括:针对神经网络模型中的每一个神经元层,确定每个神经元层的模型参数集合,其中,模型参数集合包含多个模型参数;对多个模型参数进行第一变换以生成多个中间参数;根据预设的量化步长对多个中间参数进行量化,得到多个量化参数;根据预设的量化位数,从多个量化参数中选取多个采样量化点;根据多个量化参数的值和多个采样量化点,生成多个模型参数的量化值;根据量化值对多个模型参数进行压缩存储。该方法可以更好地保持模型效果,大大减少了神经网络模型的大小,减少了计算资源,特别是减少了内存资源的占用。
搜索关键词: 神经网络 模型 压缩 方法 以及 装置
【主权项】:
1.一种神经网络模型压缩方法,其特征在于,包括以下步骤:针对神经网络模型中的每一个神经元层,确定所述每个神经元层的模型参数集合,其中,所述模型参数集合包含多个模型参数;对所述多个模型参数进行第一变换以生成多个中间参数;根据预设的量化步长对所述多个中间参数进行量化,得到多个量化参数;根据预设的量化位数,从所述多个量化参数中选取多个采样量化点;根据所述多个量化参数的值和所述多个采样量化点,生成所述多个模型参数的量化值;根据所述量化值对所述多个模型参数进行压缩存储。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京百度网讯科技有限公司,未经北京百度网讯科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201610943049.X/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top