[发明专利]一种基于Spark与优化MBBO算法的并行虚拟机聚合方法有效

专利信息
申请号: 201610948453.6 申请日: 2016-10-26
公开(公告)号: CN106843997B 公开(公告)日: 2018-08-10
发明(设计)人: 郑庆华;李睿;钟阿敏;刘猛;王晔阳 申请(专利权)人: 西安交通大学
主分类号: G06F9/455 分类号: G06F9/455
代理公司: 西安通大专利代理有限责任公司 61200 代理人: 李宏德
地址: 710049 陕*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供一种基于Spark与优化MBBO算法的并行虚拟机聚合方法,通过拓展的Spark并行框架及多目标生物地理学优化MBBO算法,从而能够在比较短的收敛时间内求解VMC问题的最佳迁移方案,为后续的虚拟机并行迁移奠定基础。其包括如下步骤,步骤1,将虚拟机聚合问题映射到生物地理学优化算法中,确定约束条件,明确求解目标;步骤2,基于拓展的Spark并行框架,分发满足约束条件的初始栖息地群到各Spark计算节点并迭代执行MBBO并行算法,直到满足终止条件,停止算法执行并获取能够平衡多个优化求解目标的最优解。利用拓展的Spark并行框架的同时,将生物地理学概念映射到优化问题中。
搜索关键词: 一种 基于 spark 优化 mbbo 算法 并行 虚拟机 聚合 方法
【主权项】:
1.一种基于Spark与优化MBBO算法的并行虚拟机聚合方法,其特征在于,包括如下步骤,步骤1,将虚拟机聚合问题映射到生物地理学优化算法中,确定约束条件,明确求解目标;步骤2,基于拓展的Spark并行框架,分发满足约束条件的初始栖息地群到各Spark计算节点并迭代执行MBBO并行算法,直到满足终止条件,停止算法执行并获取能够平衡多个优化求解目标的最优解;具体包括如下步骤,步骤2.1,通过添加二级Reduce方法拓展Spark并行框架,使其具有Map‑1stReduce‑2ndReduce 3个执行阶段,并采用主从式‑细粒度的两层并行化模型;并行框架的上层采用主从式的并行模式,由Master节点将初始栖息地群划分为若干个群岛,分配到不同的Worker节点并行执行;Master节点负责任务分派,结果回收、子问题的切分以及监督算法的执行状态;步骤2.2,并行框架的下层采用细粒度的并行模式实现各群岛的并行执行过程;各Worker节点采用Map方法接收对应的群岛,并进行群岛内SIV迁移和突变的迭代过程;采用1stReduce方法获取同一Worker节点上Map方法产生的中间结果,进行子代栖息地群和父代精英解的HSI计算并从高到地排序,替换更新该Worker节点保存的父代精英解并作为下一次迭代过程的初始栖息地群;步骤2.3,经过设定的迭代间隔,采用2nd Reduce方法获取所有Worker节点1st Reduce产生的最新精英解并相互交换,交付给Master节点;步骤2.4,由Master节点收集各Worker节点的精英解,判断终止条件,若不满足终止条件,则将收集的精英解重新分发到各Worker节点,作为新栖息地群参加下一次迭代过程。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安交通大学,未经西安交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201610948453.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top