[发明专利]基于深度层级特征融合的中国传统视觉文化符号识别方法有效
申请号: | 201610976349.8 | 申请日: | 2016-11-07 |
公开(公告)号: | CN106845510B | 公开(公告)日: | 2020-04-07 |
发明(设计)人: | 吴晓雨;杨成;谭笑;马禾;朱贝贝;杨磊 | 申请(专利权)人: | 中国传媒大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;G06N3/08 |
代理公司: | 北京市商泰律师事务所 11255 | 代理人: | 毛燕生 |
地址: | 100024 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 基于深度层级特征融合的中国传统视觉文化符号识别方法,属于图像处理与计算机视觉技术领域。首先利用深度学习中卷积神经网络来训练分类模型;其次在训练好的模型中提取各层的视觉文化符号特征,并利用Softmax回归来计算每一层的权重,将每一层的特征合并成一个长向量,作为每一类图像的图像特征表示;再将提取后的特征经过PCA降维并归一化后送入到浅层学习SVM中进行分类;最后再利用集成学习的思想,将深度学习的识别结果和深浅结合的识别结果利用回归树结合,得到最终的分类结果。 | ||
搜索关键词: | 基于 深度 层级 特征 融合 中国传统 视觉 文化 符号 识别 方法 | ||
【主权项】:
基于深度层级特征融合的中国传统视觉文化符号识别方法,其特征在于首先利用深度学习中卷积神经网络来训练分类模型;其次在训练好的模型中提取各层的视觉文化符号特征,并利用Softmax回归来计算每一层的权重,将每一层的特征合并成一个长向量,作为每一类图像的图像特征表示;再将提取后的特征经过PCA降维并归一化后送入到浅层学习SVM中进行分类;最后再利用集成学习的思想,将深度学习的识别结果和深浅结合的识别结果利用回归树结合,得到最终的分类结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国传媒大学,未经中国传媒大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201610976349.8/,转载请声明来源钻瓜专利网。