[发明专利]基于证据分类和冲突衡量的加权证据融合方法有效
申请号: | 201610984406.7 | 申请日: | 2016-11-09 |
公开(公告)号: | CN106650785B | 公开(公告)日: | 2019-05-03 |
发明(设计)人: | 李军伟;刘先省;胡振涛;金勇;周林 | 申请(专利权)人: | 河南大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 郑州联科专利事务所(普通合伙) 41104 | 代理人: | 刘建芳 |
地址: | 475001*** | 国省代码: | 河南;41 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于证据分类和冲突衡量的加权证据融合方法,包括如下步骤:首先,获取多个传感器测量信息,转换为证据信息,然后,对上述每两个证据进行计算其是否具有一致性;如果有计算一致性冲突系数,如果没有计算非一致性冲突系数;然后共同求解证据的权重系数,通过权重系数对融合的证据进行修正,最后采用采用Dempster组合规则对修正后的证据进行逐个融合,输出最终目标识别的决策结果。本发明方案与传统算法相比,综合考虑证据之间单子集焦元基本概率赋值的差异和证据之间不同焦元交集不为空集部分的支持程度,共同衡量证据之间的冲突程度,在此基础上确定融合证据的权重系数,并对融合证据进行修正,具有重要的理论意义和应用价值。 | ||
搜索关键词: | 基于 证据 分类 冲突 衡量 加权 融合 方法 | ||
【主权项】:
1.基于证据分类和冲突衡量的加权证据融合方法,其特征在于:包括以下几个步骤:A、通过获取多个传感器测量信息相对应证据焦元的基本概率赋值,将每一个证据看作一个向量,所述第i个证据的向量用mi=(mi(θ1),…,mi(θr),…,mi(θk))T表示,其中i=1,2,…,n,n为证据向量的总数,k为辨识框架Θ中的焦元个数,r=1,2,…,k;B、对第i个证据mi和第j个证据mj是否为一致证据进行判断:根据mi中最大的基本概率赋值对应的焦元与证据mj中最大的基本概率赋值对应的焦元是否为同一焦元来判断,若为同一焦元,则称证据mi和mj为一致证据,否则称证据mi和mj为非一致证据,其中i,j=1,2,…,n;i≠j;C、通过公式计算差异性系数,得到任意第i个证据mi和第j个证据mj之间的差异性系数d(mi,mj),式中Mi表示一个行向量,Di表示一个列向量;D、由任意证据mi和mj之间的差异性系数d(mi,mj)根据证据分类结果分别通过公式:和计算任意一致证据mi和mj和非一致证据mi和mj之间的冲突系数conf(mi,mj);E、由得到的任意第i个证据mi和第j个证据mj之间的冲突系数conf(mi,mj)通过公式:求得第i个证据与其他n‑1个证据的总冲突程度因子conf(mi)和第i个证据与其它n‑1个证据的相对支持程度因子truf(mi),并利用n个证据中最大的相对支持程度因子trufmax和i个证据与其他n‑1个证据的相对支持程度因子truf(mi)通过公式得到权重系数ωi,F、记第i个证据中焦元θr的基本概率赋值用mi(θr)表示,其中r=1,2,…,k,修正后的第i个证据中焦元θr的基本概率赋值用表示,根据步骤E中得到的权重系数ωi通过公式:对融合的证据进行修正;G、最后,采用Dempster组合规则对修正后的证据进行逐个融合,融合后焦元A的基本概率赋值m(A)的最大值对应的焦元为目标识别的决策结果对应的识别目标,即为决策最终结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于河南大学,未经河南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201610984406.7/,转载请声明来源钻瓜专利网。