[发明专利]一种强风高速铁路沿线风速空间网络构造预测方法有效

专利信息
申请号: 201611024045.8 申请日: 2016-11-14
公开(公告)号: CN106372731B 公开(公告)日: 2017-07-28
发明(设计)人: 刘辉;李燕飞;米希伟 申请(专利权)人: 中南大学
主分类号: G06N99/00 分类号: G06N99/00;G06N3/02
代理公司: 长沙市融智专利事务所43114 代理人: 龚燕妮
地址: 410083 湖南*** 国省代码: 湖南;43
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种强风高速铁路沿线风速空间网络构造预测方法,该方法通过3种预测模型构建最优加权组合模型来预测风速。其中,第1个预测模型利用多测风站短时历史风速数据,第2个预测模型利用单测风站短时历史风速数据,第3个预测模型利用多测风站历史风速数据和对应的历史气象数据。该方法融入了空间、时间、气象等多种元素,利用了当前时段辅助测风站和目标测风站数据、历史辅助测风站和目标测风站气象数据、风速数据等多种数据,保证了数据的多样性;将时间相关性和空间相关性有机结合,提高了预测的可靠性;通过利用3个基本模型在预测过程中存在数据交织,减少了计算量;预测稳定性高,可以实现超前多步预测,具有工程应用价值。
搜索关键词: 一种 强风 高速 铁路沿线 风速 空间 网络 构造 预测 方法
【主权项】:
一种强风高速铁路沿线风速空间网络构造预测方法,其特征在于,包括以下步骤:步骤1:在目标测风站位置周围至少安装N个辅助测风站,利用辅助测风站实时采集辅助测风站的风速数据,获得目标测风站和辅助测风站的风速样本集合;其中,N为大于或等于5的整数;步骤2:对辅助测风站数据和目标测风站数据依次进行滤波和2层深度小波分解,提取低频数据部分;步骤3:利用步骤2获得的辅助测风站和目标测风站的低频数据部分构建空间‑目标测风站超前多步预测模型,同时,利用目标测风站的低频数据部分构建自我‑目标测风站超前多步预测模型;步骤4:利用与目标测风站的低频数据部分对应的目标测风站所处位置的气象属性数据,寻找与该目标测风站当前风速的气象属性相似的历史测风数据,构建气象‑目标测风站超前多步预测模型;所述气象属性数据包括季节、时刻及风速、气温、气压、湿度的最高值、最低值和均值;步骤5:将空间‑目标测风站超前多步预测模型、自我‑目标测风站超前多步预测模型以及气象‑目标测风站超前多步预测模型获得的目标测风站超前多步预测值输入贝叶斯组合模型,获取最终的目标测风站预测值;所述超前多步预测是指利用当前时刻T的风速数据输入对应预测模型获得下一时刻T+1的风速预测,然后,利用下一时刻T+1的风速预测值再次输入对应预测模型,获得T+2时刻的风速预测值,往复迭代获得超前多步预测值。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中南大学,未经中南大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201611024045.8/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top