[发明专利]基于RGB特征与深度特征的原始图像层融合方法及系统在审
申请号: | 201611038709.6 | 申请日: | 2016-11-23 |
公开(公告)号: | CN106778810A | 公开(公告)日: | 2017-05-31 |
发明(设计)人: | 袁家政;刘宏哲;郭燕飞 | 申请(专利权)人: | 北京联合大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 北京驰纳智财知识产权代理事务所(普通合伙)11367 | 代理人: | 谢亮 |
地址: | 100101 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于RGB特征与深度特征的原始图像层融合方法及系统,其中所述方法包括如下步骤第一步,分别采集同一物体同一时刻同一场景的RGB图像与深度图像;第二步,获取单独的基于RGB图像的物体识别准确率与基于深度图像的物体识别准确率;第三步通过决策树算法为MMSAE算法初始化参数;第四步MMSAE算法获取融合图像的识别准确率;第五步判断所述融合图像的识别准确率是否高于系统设定阈值,若所述识别准确率不高于设定阈值,则返回第三步,若所述识别准确率高于设定阈值,则输出识别后的物体图像。本发明根据不同种类的特征对不同类别的物体的识别贡献差异性,完成了特征的有效融合,提高了物体识别的准确率,提高了运算效率。 | ||
搜索关键词: | 基于 rgb 特征 深度 原始 图像 融合 方法 系统 | ||
【主权项】:
一种基于RGB特征与深度特征的原始图像层融合方法,包括如下步骤:第一步,分别采集同一物体同一时刻同一场景的RGB图像与深度图像;第二步,获取单独的基于RGB图像的物体识别准确率与基于深度图像的物体识别准确率;第三步:通过决策树算法为MMSAE算法初始化参数;第四步:MMSAE算法有差异性地提取RGB图像和深度图像的有效特征并将所述有效特征融合,获取融合图像的识别准确率;第五步:判断所述融合图像的识别准确率是否高于系统设定阈值,若所述识别准确率不高于设定阈值,则返回第三步,若所述识别准确率高于设定阈值,则输出识别后的物体图像。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京联合大学,未经北京联合大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201611038709.6/,转载请声明来源钻瓜专利网。