[发明专利]一种沙粒显微图像的多目标自动鉴别方法有效

专利信息
申请号: 201611055612.6 申请日: 2016-11-25
公开(公告)号: CN106557758B 公开(公告)日: 2019-04-19
发明(设计)人: 王秉乾;郝慧珍;顾庆;胡修棉 申请(专利权)人: 南京大学
主分类号: G06K9/00 分类号: G06K9/00;G06K9/62;G06N3/04;G06N3/08
代理公司: 江苏圣典律师事务所 32237 代理人: 贺翔
地址: 210023 江苏省南*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种沙粒显微图像的多目标自动鉴别方法,其步骤是:1)制备沙粒显微图像,使用中值滤波预处理;给沙粒样本图像添加对应标签,制备沙粒单元库;2)使用区域生长算法分割沙粒显微图像,去除杂质并提取多目标单元;3)计算沙粒单元的纹理和形状特征;4)基于沙粒单元库,训练RBF神经网络分类器;5)预测沙粒单元的类别,并输出沙粒显微图像的成分组成。本方法运用图像处理技术和机器学习方法,自动提取并识别沙粒显微图像中的多目标单元,能够解决图像中杂质较多从而影响多目标单元提取的问题。
搜索关键词: 一种 沙粒 显微 图像 多目标 自动 鉴别方法
【主权项】:
1.一种沙粒显微图像的多目标自动鉴别方法,其特征在于包括以下步骤:1)制备沙粒显微图像,对其进行中值滤波预处理;给沙粒样本图像添加对应的类别标签,制备沙粒单元库;2)使用区域生长算法分割沙粒显微图像,去除杂质并提取多目标单元,作为待识别的沙粒单元;其具体步骤是:2.1)首先,使用超像素分割方法将沙粒显微图像划分为超像素集合;然后,对于给定超像素,针对其中包含的每个像素,抽取灰度,HSV,Lbp特征值,作为像素的特征向量,计算该超像素中所有像素特征向量的平均值,作为超像素的特征向量,其中,HSV是包含色调H,饱和度S,明度V的三通道颜色模型;Lbp是局部二值模式,用来描述像素的纹理特征;2.2)使用OTSU算法确定沙粒显微图像中分割前景和背景的阈值,从平均灰度小于阈值的超像素集合中随机选择一个超像素作为初始种子点;接着,使用随机游走算法选择其它种子点;设定种子总数seeds,seeds值小于40;设初始超像素种子点为出发点,等概率随机选择相邻超像素中的一个作为游走方向,游走到该相邻超像素,并计为一个步长;以随机步长step游走结束时,若当前超像素为非种子点,且当前超像素平均灰度和初始种子灰度差值的绝对值小于阈值δ1取值范围0~20,则把此超像素作为种子点,并设为新的出发点;否则退回到出发点,重新以随机步长step游走;重复以上过程直到种子点数等于seeds,这样就得到用来区域生长的种子点集合;2.3)对每个种子点,利用区域生长算法合并种子点的相邻超像素,直到合并区域停止生长;在区域生长过程中,使用欧式距离作为超像素之间的相似性度量,只有相似性小于预设参数threshold的相邻超像素被归入合并区域;最终得到的图像包括一个合并区域和多个相互分离的单元;2.4)最后,对于合并区域外的多个相互分离的单元,若单元面积较小,少于35个像素,则把该单元归入合并区域,其它单元列为待合并单元;对每个待合并单元,计算其包含超像素的平均灰度,寻找合并区域中与其相邻的超像素集合,计算该超像素集合的灰度平均值,作为超像素集合的平均灰度;如果该单元平均灰度和超像素集合平均灰度差值的绝对值小于δ2,δ2取值范围0~20;则把该单元归入合并区域;最终得到沙粒显微图像的分割结果,删除合并区域,提取相互分离的单元作为多目标单元,每个单元即待识别的沙粒单元;3)计算沙粒单元的纹理特征和形状特征,作为沙粒单元的分类特征向量;4)基于沙粒单元库,训练RBF神经网络分类器;5)预测每个沙粒单元的类别,计算并输出沙粒显微图像的成分组成。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京大学,未经南京大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201611055612.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top