[发明专利]基于傅里叶描述子和步态能量图融合特征的步态识别方法在审
申请号: | 201611067039.0 | 申请日: | 2016-11-24 |
公开(公告)号: | CN106529499A | 公开(公告)日: | 2017-03-22 |
发明(设计)人: | 石英;陈洁;余国刚;巢文科;全书海;张立炎;陈启宏;谢长君;邓坚;雷博文;杜科;孙明军 | 申请(专利权)人: | 武汉理工大学 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/60;G06K9/62 |
代理公司: | 湖北武汉永嘉专利代理有限公司42102 | 代理人: | 王守仁 |
地址: | 430070 湖*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及基于傅里叶描述子和步态能量图融合特征的步态识别方法,即对单帧图像进行灰度化预处理,使用混合高斯模型实时更新背景,并通过背景减除法获取前景;对每帧进行二值化、形态学处理,获取运动人体的最小外接矩,并归一化至同一高度,根据最小外接矩高宽比的周期性变化获取步态周期及关键5帧;提取关键5帧傅里叶描述子的低频部分作为特征一;中心化周期内所有帧以获取步态能量图,通过主成分分析降维作为特征二;融合此两个特征后采用支持向量机进行识别。本发明能够实现对当前人行为是否异常的判定;使用混合高斯模型以确保对背景准确建模,同时具有较好的实时性;使用的融合特征具有强表征性和鲁棒性,能有效提高异常步态的识别率。 | ||
搜索关键词: | 基于 傅里叶 描述 步态 能量 融合 特征 识别 方法 | ||
【主权项】:
基于傅里叶描述子和步态能量图融合特征的步态识别方法,其特征是对单帧图像实时采集侧面步态视频并进行灰度化预处理,使用融合混合高斯模型实时更新背景,并通过背景减除法获取前景;对每帧进行二值化、形态学处理,获取运动人体的最小外接矩,将运动人体所在区域从图像中分割出来,并归一化至同一高度,根据最小外接矩高宽比的周期性变化获取步态周期及关键5帧;提取关键5帧傅里叶描述子的低频部分作为步态特征一;中心化周期内所有帧以获取步态能量图,通过主成分分析降维作为步态特征二;融合步态特征一和步态特征二,得到最终描述子后,采用支持向量机进行识别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于武汉理工大学,未经武汉理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201611067039.0/,转载请声明来源钻瓜专利网。