[发明专利]一种基于曲率特征递归神经网络的三维目标识别方法有效
申请号: | 201611096314.1 | 申请日: | 2016-12-02 |
公开(公告)号: | CN108154066B | 公开(公告)日: | 2021-04-27 |
发明(设计)人: | 梁炜;李杨;郑萌;谈金东;彭士伟 | 申请(专利权)人: | 中国科学院沈阳自动化研究所 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06N3/04 |
代理公司: | 沈阳科苑专利商标代理有限公司 21002 | 代理人: | 许宗富 |
地址: | 110016 辽*** | 国省代码: | 辽宁;21 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及图像识别技术,为了有效地刻画三维目标在不同视角下的特征,针对三维目标识别过程中存在的图像噪声问题,提出了一种基于曲率特征递归神经网络的三维目标识别方法。首先,本发明通过计算目标三维模型的局部平均高斯曲率和平均均值曲率得出目标三维模型的联合曲率,并通过提取联合曲率局部极大值构成三维模型的曲率草图,利用透射投影变换生成360°二维图像序列作为训练递归神经网络的输入;其次,利用双向递归神经网络(BRNN)作为三维模型多视角序列特征学习方法,在softmax层利用softmax函数求得正确概率最大的识别类别。本发明能够自动提取三维目标与二维图像的共同特征,能够在图像噪声条件下保持较好的鲁棒性和较高的目标识别率。 | ||
搜索关键词: | 一种 基于 曲率 特征 递归 神经网络 三维 目标 识别 方法 | ||
【主权项】:
一种基于曲率特征递归神经网络的三维目标识别方法,其特征在于,包括以下步骤:步骤1:计算目标三维模型的联合曲率提取联合曲率的局部极大值构成三维模型的曲率草图RSketch;再对三维模型的曲率草图RSketch利用透射投影变换生成360°二维图像Pm,其中m=1,2,...,360;步骤2:将360°二维图像输入BRNN,利用多角度特征进行学习计算其在多视角下的序列属性;在softmax层利用softmax函数求得序列属性的正确概率最大时的识别类别;所述BRNN为双向递归神经网络。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院沈阳自动化研究所,未经中国科学院沈阳自动化研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201611096314.1/,转载请声明来源钻瓜专利网。
- 上一篇:一种周界预警光纤振动信号采集与去噪的方法
- 下一篇:一种泥石流区域监测方法