[发明专利]用于实现稀疏卷积神经网络加速器的装置和方法在审
申请号: | 201611104030.2 | 申请日: | 2016-12-05 |
公开(公告)号: | CN107239824A | 公开(公告)日: | 2017-10-10 |
发明(设计)人: | 谢东亮;张玉;单羿 | 申请(专利权)人: | 北京深鉴智能科技有限公司 |
主分类号: | G06N3/04 | 分类号: | G06N3/04;G06N3/063;G06N3/08 |
代理公司: | 北京卓孚知识产权代理事务所(普通合伙)11523 | 代理人: | 刘光明,李亚 |
地址: | 100084 北京市*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 提供一种用于实现稀疏卷积神经网络加速器的装置和方法。在本发明的装置中,包括卷积与池化单元、全连接单元和控制单元。通过依据控制信息而读取卷积参数信息与输入数据与中间计算数据,并且读取全连接层权值矩阵位置信息,根据卷积参数信息对输入数据进行第一迭代次数的卷积与池化操作,然后根据全连接层权值矩阵位置信息进行第二迭代次数的全连接计算。每个输入数据被分割为多个子块,由卷积与池化单元和全连接单元分别对多个子块并行进行操作。本发明采用专用电路,支持全连接层稀疏化卷积神经网络,采用ping‑pang缓存并行化设计与流水线设计,有效平衡I/O带宽和计算效率,并获得较好的性能功耗比。 | ||
搜索关键词: | 用于 实现 稀疏 卷积 神经网络 加速器 装置 方法 | ||
【主权项】:
一种用于实现稀疏卷积神经网络加速器的装置,包括:卷积与池化单元,用于根据卷积参数信息对输入数据进行第一迭代次数的卷积与池化操作,以最终得到稀疏神经网络的输入向量,其中,每个输入数据被分割为多个子块,由卷积与池化单元对多个子块并行进行卷积与池化操作;全连接单元,用于根据全连接层权值矩阵位置信息对输入向量进行第二迭代次数的全连接计算,以最终得到稀疏卷积神经网络的计算结果,其中,每个输入向量被分割为多个子块,由全连接单元对多个子块并行进行全连接操作;控制单元,用于确定并且向所述卷积与池化单元和所述全连接单元分别发送所述卷积参数信息和所述全连接层权值矩阵位置信息,并且对上述单元中的各个迭代层级的输入向量读取与状态机进行控制。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京深鉴智能科技有限公司,未经北京深鉴智能科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201611104030.2/,转载请声明来源钻瓜专利网。